
Optimizing Precision for High-Performance, Robust, and
Energy-Efficient Computations

Roman Iakymchuk
Fabienne Jézéquel

Stef Graillat
Sorbonne University, CNRS, LIP6,

France

Daichi Mukunoki
Toshiyuki Imamura

Yiyu Tan
Atsushi Koshiba
Jens Huthmann
Kentaro Sano

RIKEN Center for Computational
Science, Japan

Norihisa Fujita
Taisuke Boku

Center for Computational Sciences,
University of Tsukuba, Japan

Introduction. In numerical computations, precision of floating-
point computations is a key factor to determine the performance
(speed and energy-efficiency) as well as the reliability (accuracy and
reproducibility). However, precision generally plays a contrary role
for both. Therefore, the ultimate concept for maximizing both at the
same time is the minimal-precision computing through precision-
tuning, which adjusts the optimal precision for each operation and
data. Several studies have been already conducted for it so far (e.g. [1,
9]), but the scope of those studies is limited to the precision-tuning
alone. Our project aims to propose a broader concept of theminimal-
precision computing system with precision-tuning, involving both
hardware and software stack.

Minimal-precision computing system. The proposed sys-
tem [7] combines (1) a precision-tuning method, (2) arbitrary-
precision arithmetic libraries, (3) fast and accurate numerical li-
braries, and (4) heterogeneous architectures with Field-Program-
mable Gate Array (FPGA). We explain the overall procedure below.

(1) We target IEEE-754 2008 floating-point numbers. An input C
code and a requested accuracy are given by the user. We assume
that the floating-point variables and operations in the code are
defined using the GNUMultiple Precision Floating-Point Reliable
(MPFR) library [2]. For codes using FP32/FP64, we can also rely
upon MPFR or MPFR-nize them.

(2) The precision-tuner determines the optimal floating-point preci-
sions for all variables in the code, which are needed to achieve
the computation result with the requested accuracy. Tuning is
performed by comparing with a result validated by Discrete Sto-
chastic Arithmetic (DSA). Thus, the optimized code is reliable.
Simply speaking, DSA estimates the rounding errors of floating-
point operations with the guarantee of 95% by executing the
same code three times with random-rounding (randomly round-
down or -up). Then, the common digits in the three results are
assumed to be a reliable result. It is a general scheme applicable
for any floating-point operations: no special algorithms and no
code modification are needed. We propose to use two DSA li-
braries, namely CADNA [6] and SAM [4], as well as a precision
tuner called PROMISE [3].

(3) The tuned-code (with MPFR) proceeds to the performance op-
timization phase (and execution). At this stage, if possible to
speed up some portions of the code with some fast computa-
tion methods (including GPU acceleration), those parts are re-
placed with them. The method must be at least as accurate as

that of the required-precision. We may be able to use hardware-
native floating-point operations (e.g., FP16/FP32/FP64), fast high-
precision arithmetic libraries, and accurate numerical libraries.
For instance, ExBLAS [5] and OzBLAS [8] libraries for accurate
and reproducible BLAS. We assume that this step is processed
manually for now, but we plan to automate or assist it.

(4) Another possibility for performance improvement is utilizing
FPGA. FPGA enables us to implement and perform arbitrary-
precision floating-point operations: it realizes the ultimate mini-
mal-precision computing and achieves better performance and
energy-efficiency than software implementations on general
processors. Owing to the High-Level Synthesis (HLS) technology,
we can use FPGA through existing programming languages such
as C/C++ and OpenCL. As a target platform, we plan to utilize
the Cygnus supercomputer at the University of Tsukuba that is
equipped with GPUs and FPGAs.
Conclusion. We proposed a new systematic approach for mini-

mal-precision computations. This approach is high-performant,
robust, energy-efficient, general, comprehensive, and realistic. Al-
though the system is still in development, this presentation showed
that the system could be constructed by combining already available
in-house technologies as well as extending them.

Acknowledgment:Thisworkwas partially supported by EUMSCA-
IF Robust Grant No. 842528 and JSPS KAKENHI Grant No. 19K20286.
References.
[1] F. Févotte and B. Lathuilìère. 2019. Debugging and optimization of HPC programs

in mixed precision with the Verrou tool. hal-02044101 (2019).
[2] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A

Multiple-precision Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Softw. 33, 2 (2007).

[3] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière. 2019. Auto-tuning
for floating-point precision with Discrete Stochastic Arithmetic. Journal of
Computational Science. 36 (2019), 101017.

[4] S. Graillat, F. Jézéquel, S. Wang, and Y. Zhu. 2011. Stochastic Arithmetic in
Multiprecision. Mathematics in Computer Science. 5, 4 (2011), 359–375.

[5] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat. 2015. ExBLAS: Reproducible
and Accurate BLAS Library. In Proc. NRE2015 at SC’15.

[6] F. Jézéquel and J.-M. Chesneaux. 2008. CADNA: a library for estimating round-off
error propagation. Comput. Phys. Commun. 178, 12 (2008), 933–955.

[7] D. Mukunoki, T. Imamura, Y. Tan, A. Koshiba, J. Huthmann, K. Sano, F. Jézéquel, S.
Graillat, R. Iakymchuk, N. Fujita, and T. Boku. 2019. Minimal-Precision Comput-
ing for High-Performance, Energy-Efficient, and Reliable Computations. Research
Posters at SC’19. (2019). (accepted).

[8] D. Mukunoki, T. Ogita, and K. Ozaki. 2019. Accurate and Reproducible BLAS
Routines with Ozaki Scheme for Many-core Architectures. In Proc. PPAM2019.
(accepted).

[9] C. Rubio-González, Cuong Nguyen, Hong Diep Nguyen, J. Demmel, W. Kahan, K.
Sen, D. H. Bailey, C. Iancu, and D. Hough. 2013. Precimonious: Tuning assistant
for floating-point precision. In Proc. SC ’13. 1–12.


