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ABSTRACT
In this study, the performance of acoustic finite-difference time-
domain (FDTD)(2,4) method was evaluated by using a partitioned
global address space (PGAS) runtime system mSMS. The results
show that mSMS can achieve nearly ideal weak scaling performance
on TSUBAME 3.0 and ITO supercomputer system.
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1 INTRODUCTION
For efficient large-scale acoustic analysis, it is important to employ
high-order FDTD method such as FDTD(2,4) method [2], which has
second-order accuracy in time and fourth-order accuracy in space.

To improve the programming productivity in multiple-node en-
vironments, a PGAS language that provides a global view of pro-
gramming can be used.

In this study, mSMS [1], which is page-based distributed shared
memory system is used formulti-node implementation of FDTD(2,4)
method, and the performance evaluation is presented.

2 NUMERICAL METHOD AND
IMPLEMENTATION

The equations governing the acoustic wave in three dimensions
are given by
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where ®v is the particle velocity, p is the acoustic pressure, ρ is the
density of the medium, k is the bulk modulus.

In FDTD(2,4) method, the spatial difference operator with fourth-
order accuracy is used [2]. For example in the x-direction, it can be
denoted by
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For the multi-node implementation with mSMS, a remote data
preload API is used for halo exchange, which is an alternative to
remote page fetching by SIGSEGV signal handler. OpenMP is used
for intra-node parallelization.

3 PERFORMANCE EVALUATION
The performance evaluation was performed on TSUBAME 3.0 (Intel
Xeon E5-2680 v4, 14 core, 2.4GHz × 2 / node, Intel Omni-Path
100Gb/s × 4, Intel MPI 2018.1.163) and ITO Subsystem A (Intel Xeon
Gold 6154, 18 core, 3.0 GHz × 2 / node, InfiniBand EDR 4x 100Gb/s,
MVAPICH2-X 2.2). The number of OpenMP threads is set to 24 in
both architectures. The data are parallelized in the z-direction, and
the mesh size is set to 10243 per 1 node with double precision.

Fig. 1 shows the weak scaling of a parallel FDTD(2,4) solver
from 1 node to 32 nodes. The leftmost bars in Fig. 1 represent the
baselines, i.e., the single-node execution times without using mSMS
on each architecture. The ratios of the 2-32 nodes execution time to
the baseline execution time determined using ITO-A and TSUBAME
3.0 are 1.07-1.16 and 1.09-1.30, respectively.

Figure 1: Weak scaling results (Average execution time per
10 simulation steps for 5 runs)

4 CONCLUSIONS
We presented nearly ideal weak scaling results of the FDTD(2,4)
method parallelized with mSMS and OpenMP, in spite of using a
straightforward implementation, which requires data exchange in
every time step. In future works, incorporate spatial and temporal
blocking to FDTD(2,4) method should improve the performance.
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