
Performance Evaluation of Acoustic FDTD(2,4) Method Using
Distributed Shared Memory System mSMS

Ryoya Tabata
Kyushu Institute of Technology

Fukuoka, Japan
tabata@chaos.mse.kyutech.ac.jp

Hiroko Midorikawa
Seikei University
Tokyo, Japan

midori@st.seikei.ac.jp

Ki’nya Takahashi
Kyushu Institute of Technology

Fukuoka, Japan

ABSTRACT
In this study, the performance of acoustic finite-difference time-
domain (FDTD)(2,4) method was evaluated by using a partitioned
global address space (PGAS) runtime system mSMS. The results
show that mSMS can achieve nearly ideal weak scaling performance
on TSUBAME 3.0 and ITO supercomputer system.

KEYWORDS
FDTDmethod, PGAS, software distributed sharedmemory, acoustic
field simulation.

1 INTRODUCTION
For efficient large-scale acoustic analysis, it is important to employ
high-order FDTD method such as FDTD(2,4) method [2], which has
second-order accuracy in time and fourth-order accuracy in space.

To improve the programming productivity in multiple-node en-
vironments, a PGAS language that provides a global view of pro-
gramming can be used.

In this study, mSMS [1], which is page-based distributed shared
memory system is used formulti-node implementation of FDTD(2,4)
method, and the performance evaluation is presented.

2 NUMERICAL METHOD AND
IMPLEMENTATION

The equations governing the acoustic wave in three dimensions
are given by

ρ
∂ ®v

∂t
= −∇p

∇ · ®v = −
1
k

∂p

∂t

where ®v is the particle velocity, p is the acoustic pressure, ρ is the
density of the medium, k is the bulk modulus.

In FDTD(2,4) method, the spatial difference operator with fourth-
order accuracy is used [2]. For example in the x-direction, it can be
denoted by

d4x f
n (x,y, z) =d2x f

n (x,y, z) +
1

24∆x

[
3f n

(
x +

∆x

2 ,y, z
)

− 3f n
(
x −

∆x

2 ,y, z
)
− f n

(
x +

3∆x
2 ,y, z

)
+f n

(
x −

3∆x
2 ,y, z

)]
.

For the multi-node implementation with mSMS, a remote data
preload API is used for halo exchange, which is an alternative to
remote page fetching by SIGSEGV signal handler. OpenMP is used
for intra-node parallelization.

3 PERFORMANCE EVALUATION
The performance evaluation was performed on TSUBAME 3.0 (Intel
Xeon E5-2680 v4, 14 core, 2.4GHz × 2 / node, Intel Omni-Path
100Gb/s × 4, Intel MPI 2018.1.163) and ITO Subsystem A (Intel Xeon
Gold 6154, 18 core, 3.0 GHz × 2 / node, InfiniBand EDR 4x 100Gb/s,
MVAPICH2-X 2.2). The number of OpenMP threads is set to 24 in
both architectures. The data are parallelized in the z-direction, and
the mesh size is set to 10243 per 1 node with double precision.

Fig. 1 shows the weak scaling of a parallel FDTD(2,4) solver
from 1 node to 32 nodes. The leftmost bars in Fig. 1 represent the
baselines, i.e., the single-node execution times without using mSMS
on each architecture. The ratios of the 2-32 nodes execution time to
the baseline execution time determined using ITO-A and TSUBAME
3.0 are 1.07-1.16 and 1.09-1.30, respectively.

Figure 1: Weak scaling results (Average execution time per
10 simulation steps for 5 runs)

4 CONCLUSIONS
We presented nearly ideal weak scaling results of the FDTD(2,4)
method parallelized with mSMS and OpenMP, in spite of using a
straightforward implementation, which requires data exchange in
every time step. In future works, incorporate spatial and temporal
blocking to FDTD(2,4) method should improve the performance.

ACKNOWLEDGMENTS
This work was supported by “Joint Usage/Research Center for In-
terdisciplinary Large-Scale Information Infrastructures” and “High
Performance Computing Infrastructure” in Japan (Project IDs: jh190039-
ISH and jh190010-MDH).

REFERENCES
[1] Hiroko Midorikawa, Kenji Kitagawa, and Yugo Sakaguchi. 2019. mSMS : PGAS

Runtime with Efficient Thread-based Communication for Global-view Program-
ming. In 2019 IEEE International Conference on Cluster Computing.

[2] Yuuki Sendo, Hironori Kudo, Tatsuya Kashiwa, and Tadao Ohtani. 2003. The
FDTD(2, 4) method for highly accurate acoustic analysis in three-dimensional
space. Electronics and Communications in Japan (Part III: Fundamental Electronic
Science) 86 (11 2003), 30 – 37. https://doi.org/10.1002/ecjc.10076

https://doi.org/10.1002/ecjc.10076

	Abstract
	1 Introduction
	2 Numerical Method and Implementation
	3 Performance Evaluation
	4 conclusions
	Acknowledgments
	References

