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Optimization example 1: SATD

Figure 1. Number of instructions executed measured in encoding a clip using x265
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Figure 5. Number of instructions executed in optimized SVE primitives, 

compared with original implementation (no SVE instructions used, it uses 

only NEON)

Encoding a test clip

We optimized several heavily used functions in x265, an 

open source implementation of H.265/HEVC, using SVE 

instructions. The result showed that our implementation 

reduced the number of instructions executed up to 50% 

compared to the code generated by GCC using the 

original C++ source code. The implementation also 

scales better with the vector length than the original code.

Scalable Vector Extension (SVE) [4] is a vector extension 

for ARMv8-A, a 64bit CPU architecture developed by ARM 

Ltd. The most notable feature of SVE is its scalable vector 

registers. SVE does not specify the exact length of these 

registers, but let the implementation choose the length, 

from 128 bits up to 2048 bits. SVE adopts the 

vector-length agnostic (VLA) programming model, making 

it possible to run programs on every SVE platform with 

different vector length, without the need of recompiling.

In this April, ARM announced SVE2, a new extension 

based on SVE, which has new instruction to vectorize 

DSP and multimedia SIMD codes [3]. 

H.265/HEVC is a video codec developed and 

standardized by Joint Collaborative Team on Video 

Coding (JCT-VC) on 2013. H.265/HEVC achieved higher 

compression efficiency compared to its predecessor 

H.264, at the expense of significantly higher 

computational cost.

We optimized x265 by re-implementing most heavily used 

functions using SVE instructions, and achieved reduction 

of about 50% of instructions executed using SVE 

instructions.

x265 [2] is a open source implementation of H.265/HEVC 

encoder, developed by MulticoreWare. It is written in C++ 

and assembly. Several frequently used subroutines, 

called “primitives” are implemented in assembly but it is 

not available for 64bit ARM architecture (AArch64).

- Implement more primitives using SVE instructions

- Run on latency-aware simulators, like gem5

- Investigate SVE2 [3]
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accepting the author as an intern and giving advice on 

writing and optimizing programs for SVE.

To find out most heavily used part in the x265 program, we profiled an 

execution of a test video encoding, using an AArch64 machine (without SVE 

instructions). The pie chart on the right shows the result of profiling. The 

overheads (measured in number of instructions executed) from top 10 

primitives sum up to about 2/3 of total number of executed instructions. All of 

these functions are called “primitives” in x265 source code; primitives 

process block(s) and return a block or a integer value. “Blocks” are rectangle 

parts of the picture, and their size varies from 4x4 to 64x64. Blocks contain 8 

bit or 16 bit integers, not floats.

Sum of absolute transformed difference (SATD) is a primitive that 

is used in calculation of motion search and the most frequently 

used primitive. It consists of Hadamard transform of 4-elements 

and taking sum of all transformed elements. The original C 

implementation processes elements one-by-one, but our SVE 

implementation processes VL / 16 elements at once, where VL is 

vector length. The code uses REV{H,W} instructions to swap 

elements in the vector register.

The chart on the right (Figure 5) shows the ratio of the instruction count of SVE 

optimized primitives to that of non-SVE primitives, with varying the SVE vector 

length (VL). For all of the primitives shown in the picture, the number of 

instructions get reduced as the VL become longer. This indicates the program 

made full use of vector register, which VLA programming model aims. The only 

expception here is interp_vert_pp, whose instruction count increases at 

VL=2048. This is because our implementation processes at most single line (= 

64 halfwords) at once, which is smaller than the VL. Processing multiple lines 

using whole vector may reduce instruction count for SVE machine with very 

long vectors. At VL=128, SVE and NEON (AArch64’s 128bit fixed-width SIMD) 

have the same vector length, but some SVE primitives (satd, sad, and dct32) 

still run in much smaller number of instructions. This is mainly because GCC 

failed to vectorize the code using NEON when SVE is turned off. 

We used a short test clip to count the whole numbers of instructions executed in 

encoding. We compared our optimized version of x265 with the original source 

code, built without SVE enabled. Both binaries were built using GCC 9.2, and with 

optimization option -O3 used. The result (Figure 6) shows our implementation 

reduces up to 50% of instructions, compared with the non-SVE version. Also we 

observed that the number of executed instructions decrease as the vector gets 

longer. The figure also shows how much each function takes up of the whole 

instruction count. We observed that the number of executed instructions for most 

frequently used functions gets reduced, and that leads to the reduction of total 

number of instruction executed. 
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Optimization example 2: interpolation filter

for (row = 0; row < height; row++) {
  for (col = 0; col < width; col++) {
    int sum = 0;
    for (i = 0; i < 8; i++)
      sum += src[col + i] * coeff[i];
    dst[col] = sum;
  }
  src += srcStride;
  dst += dstStride;
}

Filter primitives are used to interpolate subpixels in a block. The  

filter can be processed as shown on the left: First loads data into a 

register, and copy the data to another 7 registers (Z1-Z7) using EXT 

instruction, with sliding the window. Multiply with coefficients, and 

finally accumulate all 8 registers element-wise and get the result. 

This way we can process VL / 8 elements at once. Gather-load and 

scatter-store instructions are used in vertical variants of the filter, 

which requires non-contiguous memory access.

Optimization example 3: Transform (DCT) H.265/HEVC uses a DCT-like transform to quantize information 

efficiently. The calculation is equivalent to 2 matrix-matrix 

multiplications. But thanks to the symmetries of the coefficient 

matrix, the number of multiplication can be reduced. This algorithm 

called “partial butterfly”. In the SVE implementation, using whole of 

vector, VL/64 line(s) are processed at once, resulting higher 

scalability. SVE’s SDOT instruction does most of calculations we 

need and contributes to the reduction of the number of instructions. 

Figure 2. The Hadamard transform and its implementation in SVE

Figure 3. The interpolation filter primitive implementation in C (left), and in SVE (right)

Figure 4. Signal flow diagram of “Partial Butterfly” algorithm in H.265/HEVC DCT (left),

and the SVE’s SDOT instruction, which is used in the implementation (right).

Figure 6. Total number of instructions executed, broken down into 

functions.


