
Task-parallel algorithms for matrix factorizations
Tomohiro Suzuki (stomo@yamanashi.ac.jp), University of Yamanashi, Japan

Introduction
• Goal: Improve the resource usage of the highly-parallel system

• OpenMP : Thread parallel programming in Shared memory env.
• Past: Data parallel Present: Task parallel
• task construct with depend and priority clause

• Matrix factorization
• One-sided: Cholesky, LU, QR
• Flop counts: 𝑂(𝑁$)

• In a highly-parallel environment, the 1D/2D block algorithm with task
parallel fashion is effective for matrix factorization?

Pseudo code

Performance results

Remarks

• (1D) block algorithm

• (2D block) tile algorithm PLASMA

• 1D block matrix factorization with OpenMP task construct

• Priority variant
1. P1: none, P2: none
2. P1: p, P2: none
3. P1: p, P2: max(p/2,p-j)

• 2D block QR factorization (PLASMA)

• 1D block algorithm
• Sequential code + task & depend = task parallel code (variant1),
• However, data dependency analysis is required.
• Look-ahead does not deepen even if prioritizing only decomposition (variant2)
• To achieve deep look-ahead, update tasks must also be properly prioritized.

(variant3)
• It lacks inherent parallelism.

• 2D block algorithm (tile algorithm)
• In general, many fine-grained tasks that can be executed in parallel can be

generated.
• Without improving the pivoting strategy, the performance improvement of LU

factorization cannot be achieved.
• QR factorization shows high performance.
• It is mandatory to tune the tile size nb.

step 0

step 1

step 2 𝑘 = 3

• Target matrix is divided into 𝑝×𝑞 tiles
• Factorize and update each one or a couple of tiles

• Asynchronous execution of many fine-grained tasks

step 0 step 1

Panel factorization Panel factorizationTrailing panels updates Trailing panels updates

… • Trailing matrix is split into multiple panels

and updated for each panel

Execution trace

• p: # of panels
• nb: panel width

• CPU: Intel Core i7-6900K (8 core, @3.2GHz)
• Compiler: GNU C++ 9.2.1
• BLAS, LAPACK: MKL 2019.5.281 (core, lp64, sequential)
• OpenMP: libgomp

Experimental env.

0.01

0.10

1.00

10.00

100.00

512 2048 8192 32768

El
ap

se
d

tim
e

Size of matrix

nb = 256

variant 1

variant 2

variant 3

PLASMA

0.01

0.10

1.00

10.00

100.00

512 2048 8192 32768

El
ap

se
d

tim
e

Size of matrix

nb = 256

variant 1

variant 2

variant 3

PLASMA

1D block LU variant 1 1D block QR variant 1

1D block LU variant 2 1D block QR variant 2

1D block LU variant 3 1D block QR variant 3

2D block LU (PLASMA) 2D block QR (PLASMA)

LU factorization QR factorization

factorizaton

update

panel factorizaton gemm swp1 swp2 GEQRT SSRFBLARFBTSQRT

https://bitbucket.org/icl/plasma/

factorizaton

update

factorizaton

update

