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Introduction

This poster shows to enhance the performance of an application program by software auto-tuning (AT). Performance factors of a
target program are formed into performance parameters. So that to enhance performance is said that to estimate an appropriate
combination of performance parameters. The estimation while executing a target program should be designed, to set a combination
before each execution and evaluate the performance after each execution. For the estimation, we develop a simple AT tool “DSICE”.
The estimation by DSICE 1s based on the method of iterative collinear exploration using d-Spline [1][2]. The estimation method Is
built in the AT Infrastructure ppOpen-AT [3]. DSICE makes the estimation method to be used in a more general form. Then we apply
DSICE to estimating hyperparameters’ configuration of a machine learning model.
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Conclusion

We develop a simple AT tool “DSICE” to estimate a combination of performance parameters for a target program, and apply DSICE
to estimating hyperparameters’ configuration of a CNN model. DSICE converges efficiently within approximately 100 iterations for
164,025 configuration patterns, and reduces 10% from the accumulation of metric value during estimation. We will apply DSICE to
other performance optimization problems in our future work.
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