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For numerical simulation of partial differential equations (PDE), we need to solve linear systems with symmetric or unsymmetric large sparse matrices obtained by discretization by finite difference, finite volume and
finite element methods. Number of unknowns is more than one million and condition number of the large sparse matrix is more than 108, due to large variety of physical coefficients and/or coupling of different
physics. Sometimes direct solver could be only a possible tool to find solution of such difficult linear system. There are several sparse direct solvers for parallel computational environments, e.g., SuperLU_MT, Pardiso,
SuperLU_DIST, and MUMPS. The first two codes run on shared memory systems and others run on distributed memory system. Among them, a sparse solver Dissection, we have first developed it for symmetric
matrix in DOI:10.1002/nme.4729 on shared memory architecture, with keeping numerical stability by employing robust pivoting technique. Now the solver can factorize structurally symmetric matrix, which means
nonzero pattern of the matrix is symmetric, in both double and quadruple precision arithmetic thanks to modern C++ implementation.

For parallel computation on shared memory system, tasks of local LDU-factorization for sparse and dense sub-matrices that are generated by nested-dissection ordering are assigned to available cores
asynchronously. In precise, dependency of tasks for block factorization is analyzed and expressed as a set of directed acyclic graph (DAG)s, and quasi static assignment of tasks by considering complexity depending on
various problem sizes due to sparsity of the matrix, with additional dynamic assignment to recover from rough estimation of complexity and execution noise.

For numerical stability of LDU-factorization, threshold pivoting technique is employed, where additional Schur complement concerning on postponed pivots is build and factorized at the end of elimination
procedure. This approach works well numerically for sparse matrix from PDE thanks to nested-dissection ordering which is originated by domain decomposition strategy and archives high parallel efficiency thanks to
static structure of DAG with only one task added at the end of the elimination tree.

Dissection software is developed with F.-X. Roux @ ONERA/LJLL UPMC, France and used in FreeFEM @ LJLL UPMC, France, hpddm @ ENSEEIHT, France under GPL, and licensed to KIOXIA, Japan under CeCILL-C.
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