Dissection sparse direct solver and parallel task management

Atsushi Suzuki Cybermedia Center, Osaka University

For numerical simulation of partial differential equations (PDE), we need to solve linear systems with symmetric or unsymmetric large sparse matrices obtained by discretization by finite difference, finite volume and
finite element methods. Number of unknowns is more than one million and condition number of the large sparse matrix is more than 108, due to large variety of physical coefficients and/or coupling of different
physics. Sometimes direct solver could be only a possible tool to find solution of such difficult linear system. There are several sparse direct solvers for parallel computational environments, e.g., SuperLU_MT, Pardiso,
SuperLU_DIST, and MUMPS. The first two codes run on shared memory systems and others run on distributed memory system. Among them, a sparse solver Dissection, we have first developed it for symmetric
matrix in DOI:10.1002/nme.4729 on shared memory architecture, with keeping numerical stability by employing robust pivoting technique. Now the solver can factorize structurally symmetric matrix, which means
nonzero pattern of the matrix is symmetric, in both double and quadruple precision arithmetic thanks to modern C++ implementation.

For parallel computation on shared memory system, tasks of local LDU-factorization for sparse and dense sub-matrices that are generated by nested-dissection ordering are assigned to available cores
asynchronously. In precise, dependency of tasks for block factorization is analyzed and expressed as a set of directed acyclic graph (DAG)s, and quasi static assignment of tasks by considering complexity depending on
various problem sizes due to sparsity of the matrix, with additional dynamic assignment to recover from rough estimation of complexity and execution noise.

For numerical stability of LDU-factorization, threshold pivoting technique is employed, where additional Schur complement concerning on postponed pivots is build and factorized at the end of elimination
procedure. This approach works well numerically for sparse matrix from PDE thanks to nested-dissection ordering which is originated by domain decomposition strategy and archives high parallel efficiency thanks to
static structure of DAG with only one task added at the end of the elimination tree.

Dissection software is developed with F.-X. Roux @ ONERA/LJLL UPMC, France and used in FreeFEM @ LJLL UPMC, France, hpddm @ ENSEEIHT, France under GPL, and licensed to KIOXIA, Japan under CeCILL-C.

nested-dissection ordering of sparse matrix task execution by static + dynamic scheduling
p . .
?\W static assignment | //
) aa ; a5 zz N N 66 3 63 21 I i !
v T ih corplement) | TP 7 dynamic execution dynamic execution
- R TS IR » dependency of tasks is determined after symbolic analysis
o 7] £ Sohur complement » estimation of complexity of task based on block size
sa 5b 55 52 by dense solver » all tasks are described though some tasks are not executed due
e R Schur complement to numerical pivoting
2o 75 22 7 TR T PR oY Cerse sover » for atomic operation to update value of the index for task, mutex
R B o T A s not necessary
dense factorization 33 » on-the-fly measurement of task could improve complexity
2y estimation
7 stencil of Poisson equation in 3D, multi-frontal LDU-factorization by recursive computation
113 nodes : nested dissection ordering of Schur complements _ _
by SCOTCH details of task scheduling
» sli] 1 <4< N tasks in the critical path
i : : : : . » dlj] 1< j < M other tasks, independent of s|i]
LDU-factorization and local symmetric pivoting > 9" ratio of static scheduling, n = 8 N

dok=1,---,N » 1 <p< P :processorid

A1 Aoq A7 0 I, A7MAqs find k < 1 < n max|A(L,1)], ¢ =1, j = 1 before arrival of processes.
[A ol =l s llo Y exchange rows and columns : A(k, =) < A(L, =), A(x, k) < A(x,). while (all processes arrive and i < N) {
21 22 21 22 2 dscal A(k,§)/=A(k,k) k<j<N, while (parents of s [7] are not finished) {
dscal A(i,k)/=A(k,k) k<i<N, yerif_y parents o]‘ dlj] are finished.
1 dger A(i,j)-=A(i, k) A(k, k) A(k,j) k<i,j<N. If finished then increase index 57 and execute d[j — 1] : dynamic
S22 = Ago — A21 Ay Aig otherwise sleep until receive a wake-up signal.
_ _ ~1 }
= Azz — Az1(L11D1ilUn) ™ Av I; increase index i and execute s [i — 1] : dynamic
= Agy — (U;TAIHYT (DL A }
22— (Un Az1)" (Pry Loy Ara) if (pis the last arrived process) {
divide tasks s [i],...,s [n] into P groups {b1,...bp} with

i=b <by<...<bp<mn, where), _,_, [complexityofs[k]]are
) o T q< +1
block LDU-factorization by forward substitution homogeneous for all 1 < ¢ < P. q

of multiple-RHS and updating Schur complement symmetric pivoting in a block seti — n.

}

execute s [k] for b, < k < b,41 Without checking status of parents : static
while (i < N) {

: C . : : : iIncrease index ¢ and execute s [¢ — 1] : dynamic greed
multi-frontal and block factorization with threshold pivoting) 4 Jeety
mutex IS used to increase global variable ¢, cond_wait/cond_broadcast

7 . given threshold for null pivot ~ 1072
|A(3,7)|/|A(G — 1,1 — 1)| <7 = |A(4,1)] is null pivot.

44 P — example of task scheduling with 28 cores
55 '”NNNMSé”NMH“51
o) 7 1 Ve o | IR0 [/-y ([T |
i B G i1 L _)”Ve”'b'e entries (1 TR (I1— |
- 23| 71 2 s/\ LT I el il
ertible entries AL AN /0 W Il I 1 D |
22 21 NN , LTI A (N B Il Wl i
*\ 4 Caﬁﬂff’&{?&"f (N N i i (I I |
T i o (I
1 .
Y B LT T A T [T
T/t B I Ml [(Il I |
: : . : . HHTTTAT (i e B | N ~im
postponed pivots in multi-frontal structure postponed pivots in block dense structure TR TR T I i Cm
8| TN I | N [1N
Tt I I ~|im
- i - MO —
tasks in block factorization and dependency analysis TSR S [T
[LTITH I |l Ml Il | il
. 111 0 |l - | M I |
J I 1T A Nl Il | M D |
. AN | | I {4 D |
» o ¢ hbUHadionzalion Au = Lk Diklli e e i —
k g LTt A, . : _ :
TTL D o e e ey 1S9 e A A
: A T~T _ AT :
et e el v e e Bm————
rmeo e : hur complement S;; = A;; — Y1 (D, X
. 7 update Schur complement S5;; = Ayj — Y77 (Dy, X;) [T 1R T BRI [
i | AwU) CTR T T R .
m [[[[
parallel performance with FEM matrix of fluid dynamics,
1 1 1 1 2 1 1) 5(1 1 1 1
lsulsy] [a it {813-8983-057, 813, 898, 8, .., L), B} — ——— -
BU | 23| e {15, 75.35 2 V32 Voo . T
1000 r]
W) |11 (1) 2 2 2 3 2 2 2 2 [
G A A I 7 — {8%)-82)-~3-aP, 83, 8, ..., 82, L) | ‘ .
2 2 S | s .
<_{7§,42777i,§7777(12,%}<_ § . y L
1 1 1 S . . n
6(_'3), /y'r(l,Z /772,3 fy‘ﬁbl,n « /B_(F’I’Ln—1)_/8(—77;1—1)_/}/”7?”,_1)_0{7(1”) . -.qg: 5 i Xxo : -
Dissection o A .
100 | MUMPS + //MKL X ° o ;_
Dependency of tasks is analyzed and rearranged into set of groups, where all tasks in a group are 5 OpenMP MUI\ﬂﬁS Eg:\é'i}ga .
independend and executed in parallel. Symbols ‘< to show dependence between tasks, -’ to force o | O(1/p) L
sequential execution, and braces to show a group of tasks, are used in the above right figure. 1 # cores 10

N=1,032,183, nnz=97,961,089 by Xeon v3, 57GB mem

