

Cyberscience

Center

TOHOKU UNIVERSITY

Background

Hyperparameter tuning.

- **One significant problem** in machine learning field hyperparameter tuning.

Chaoyi Zhang

- \succ Hyperparameters: a kind of parameters not tuned during the model training process.
- \succ Appropriate hyper-parameters setting is important.
- \succ Hyperparameter tuning: the process of finding an optimal configuration of hyperparameters.

Hyperparameter Tuning

Choose a candidate of hyperparameter configuration.

Parallelization and Time Constraints

Ryusuke Egawa

Parallelization Approach

Hiroyuki Takizawa

- I. Send one random configuration to each node.
- II. When a node completes a trial, BO chooses the next candidate.
- III. If BO chooses a candidate that is the same as the ongoing candidate, the proposed method predicts the result of the ongoing candidate, and BO chooses another candidate.
- IV. Send the new candidate to the node.
- V. Repeat steps Π and Π for each node.
- Since the execution time of each trial is different, each node asks for the next candidate at different points of time.
- Step III can prevent the proposed method from choosing the same hyperparameter configuration for each node.

BO tools

Bayesian Optimization

- Bayesian Optimization (BO): a method that can find the optimal configuration with a smaller number of trials.
- Two Steps before performing BO:
 - > Find a **prior function** (Gaussian process prior) over the objective function.
 - > Use an **acquisition function** to predict the next optimal candidate through the previous observations.
- One iteration:
 - > Find the **maximum** of the acquisition function to **determine the next** candidate.
 - \succ Evaluate the objective function at the point of the candidate.
 - > Update the Gaussian process prior function and the acquisition function.

Evaluation

- As the evaluation, hyperparameters of a **CNN** model are auto-tuned for an object classification problem, called **CIFAR-10**.

Parallelization Approach

Problem

- The hyperparameter tuning with BO can be really **time-consuming**.
 - \geq 1) One trial can be time-consuming.
 - \geq 2) A large number of trials need to be performed sequentially.

Objective

- Accelerate the process of hyperparameter tuning with BO.
 - > 1) Use a **time-constraint method** to help BO choose the hyperparameter configuration that needs a **shorter execution time** for model training.
 - > 2) Achieve the **parallelization** of BO.

Proposed Approaches

Time-constraint Approach

- Time-constraint approach considers **both the execution time and accuracy** in the cost function.
- I. In the first n trials, the proposed method uses observations based on the cost function in Equation (1) for BO to select the candidates that **need a** shorter execution time.
- II. After n trials, the proposed method uses observations based on the cost

- 2×parallel standard 4×parallel
- In the figure, 'standard' is conventional BO and 'N × parallel' is the parallelized BO with N nodes.
- Proposed method is **faster in the case of using 4 nodes**.

Time-constraints Approach

- 'standard' is conventional BO and 'time_constraint' is time-constraint BO.
- The total **execution time is reduced** time-constraint approach, while the **best accuracy** among the trained models is kept statistically **unchanged**.

Conclusions

- To accelerate the hyperparameter tuning with BO, parallelization method and time-constraint method are proposed.
- Both of the proposed methods can **reduce the execution time, while** the best accuracy is statistically unchanged.

- Here, Z means the value of cost function, L means the loss, b is a constant parameter,

T means the execution time, n means the trial numbers and n_max means the max

