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Background

Hyperparameter tuning.

Cyberscience
Center

Parallelization Approach
Send one random configuration to each node.

l. When a node completes a trial, BO chooses the next candidate.

- One significant problem in machine learning field - hyperparameter lIl. If BO chooses a candidate that is the same as the ongoing candidate, the
tuning. proposed method predicts the result of the ongoing candidate, and BO
> Hyperparameters: a kind of parameters not tuned during the model training chooses another candidate.

process. IV.Send the new candidate to the node.

» Appropriate hyper-parameters setting is important.
> Hyperparameter tuning: the process of finding an optimal configuration of
hyperparameters.

V. Repeat steps II and I for each node.

- Since the execution time of each trial is different, each node asks for the
next candidate at different points of time.

- Step III can prevent the proposed method from choosing the same
hyperparameter configuration for each node.
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- Bayesian Optimization (BO): a method that can find the optimal
configuration with a smaller number of trials. BO tools No
- Two Steps before performing BO: Another
> Find a prior function (Gaussian process prior) over the objective function. candidate
node_1 node_n

> Use an acquisition function to predict the next optimal candidate
through the previous observations.
- One Iteration:
> Find the maximum of the acquisition function to determine the next
candidate.
> Evaluate the objective function at the point of the candidate.
» Update the Gaussian process prior function and the acauisition function.

- As the evaluation, hyperparameters of a CNN model are auto-tuned for an
object classification problem, called CIFAR-10.

Parallelization Approach
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Problem - In the figure, ‘standard’ is conventional BO and ‘N x parallel’ is the
narallelized BO with N nodes.

- Proposed method is faster in the case of using 4 nodes.

- The hyperparameter tuning with BO can be really time-consuming.
» 1) One trial can be time-consuming,.

> 2) A large number of trials need to be performed sequentially. Time-constraints Approach
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O
- Accelerate the process of hyperparameter tuning with BO. = 0.19
> 1) Use a time-constraint method to help BO choose the o
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model training.
> 2) Achieve the parallelization of BO.

Proposed Approaches
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- ‘standard’ is conventional BO and ‘time_constraint’ is time-constraint BO.
- The total execution time is reduced time-constraint approach, while the
best accuracy among the trained models is kept statistically unchanged.

Time-constraint Approach

- Time-constraint approach considers both the execution time and
accuracy in the cost function.

Conclusions

- To accelerate the hyperparameter tuning with BO, parallelization method
and time-constraint method are proposed.

- Both of the proposed methods can reduce the execution time, while
the best accuracy is statistically unchanged.
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