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Enabling OpenACC Programming on Multi-hybrid Accelerated
Cluster with GPU and FPGA

❖ Motivation

❖ MHOAT：meta-compiler

❖ Backend Compiler

❖ Evaluation

• GPU is the most popular Accelerator in HPC
• large scale SIMD (SIMT) fabric, high bandwidth memory
• But GPUs do not work well on application that employs

• (partially) poor parallelism
• non-regular computation (warp divergence) 
• frequent inter-node communication

• FPGAs have been emerging in HPC
• true co-designing with applications 
• making use of not only SIMD but also pipelining

• effectively processing partially poor parallelism
• high bandwidth interconnect: ~100 Gbps x 4

• We are challenging Multi-hybrid Accelerated Computing with GPU and FPGA
• However, currently users have to describe programs in two languages on different 

devices: ex) CUDA for GPU and OpenCL for FPGA
• causing heavy effort for users

• We are building a uniform programming framework to make both devices work 
together at a single code by OpenACC
• OpenACC is an API with directives for C, C++, Fortran for offloading to Accelerators

• high level abstraction more than CUDA or OpenCL
• easier solution than describing programs in tow languages
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❖ Experiment of Compiling by MHOAT

❖ Unified Programming Framework
• how to use both devices simultaneously

• Current OpenACC compiler does not assume this situation
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① Implementing a single OpenACC
program
•Specifying target devices

② Generating OpenACC programs 
each for two devices

③ Final compilations are performed 
by appropriate backend compiler 
for each deviceOur approach overview
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• Generating OpenACC programs for both devices and separately 
compiling them into an executive binary file

• Tow backend compilers 
• OpenARC for FPGA

• OpenARC: Open Accelerator Research Compiler 
developed by FTG at ORNL

• Enabling OpenACC for FPGA programming
• Translating OpenACC code in C to OpenCL with C++, 

then OpenCL code is compiled by background 
compiler, Intel FPGA SDK for OpenCL

• PGI compiler for GPU
• Supporting OpenACC with C, C++ and Fortran

• C++ for linking with OpenCL host
• Compiling OpenACC to an object file directly

• Output parts by MHOAT are compiled by corresponding 
backend compilers

• Finally, two object files are linked to a single executable file by 
PGI compiler 
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• MHOAT：Multi-Hybrid OpenACC Translator (Meta-compiler)
• currently supporting C (because OpenARC allow input only C)
• under development with restricted functionality

• Implemented with Omni Compiler developed by RIKEN R-CCS and CCS of 
University of Tsukuba

1. Code is processed by CPP (C Preprocessor), then
2. Translated to intermediate code called “XcodeML” by C-FrontEnd, 

and
3. Compiled by MHOAT

• Input：A single OpenACC program with directive to specify target devices
• We extended current OpenACC directive with

• #pragma accomn ondevice(DEVICE)
• “accomn” means extension in Omni Compiler
• DEVICE is GPU or FPGA (predefined)

• Splitting the corresponding OpenACC-directed parts out of original 
code into two parts for GPU and FPGA

fpga.c

gpu.c

fpga
.o

gpu.o

fpga
.cl

a.out

Runtime

fpga
.aocx

pgc++

fpga
.cpp

PGI Compiler 
(pgc++ -c)

fpga
.aoco

aoc -c aoc

pgc++ 
-c

OpenARC

OpenCL
kernel

OpenCL
host

OpenACC Object
files

Hardware specification

CPU
Intel Xeon Gold 6126
(12C / 2.6GHz) x2

Host Memory DDR4-2666 16GiB x12

GPU
NVIDIA Tesla V100
(32GiB HBM2 PCIe 3.0 x16) x4

FPGA
Intel Stratix 10 GX 2800 
(BittWare 520N PCIe Gen3 x16) x2

Software specification
OS CentOS 7

GPU + Host Compiler PGI Compiler 19.1

FPGA Compiler OpenARC V0.17 (Oct, 2019)

OpenCL Compiler Intel FPGA SDK for OpenCL 19.1.0.240
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Specification of Cygnus

• Realizing Multi-hybrid Accelerated Computing with GPU and FPGA from a process by
an OpenACC program described under Unified Programing Framework

• Evaluation on a simplified synthetic code
(NOT real application)
• vector add on GPU, then result is used for vector add calculation on FPGA
• Data communication between GPU and FPGA is perform via host memory (as shown)

• Result is verified with comparison on CPU version on Cygnus at CCS
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• Our approach vs. traditional one 
• Our approach: OpenACC*
• Traditional approach: CUDA + OpenCL

• Using a toy program (NOT real application) on PPX
• GPU：Performing matrix multiply
• CPU：Receiving a GPU result and sending it to FPGA
• FPGA：Performing the conjugate gradient method

• Programming cost comparison
• # lines of code

• Our approach reduced 30% of LOC
• # characters of code

• Our approach reduced 53% of characters
• GPU kernel and FPGA kernel in OpenACC are 

corresponding to code blocks with directives 
• Others: init function, validation function, etc.

• Execution time comparison
• GPU: 3.4x worse, FPGA: FPGA: 1.67x worse

• Because of no performance tuning
• Need to discuss FPGA parts with ORNL
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Hardware specification
CPU Intel Xeon E5-2660 v4 x2

Host Memory DDR4-2400 16GB x4

GPU NVIDIA Tesla P100 x2 (PCIe Gen3 x16)

FPGA Intel Arria 10 GX 1150 (BittWare
A10PL4)
(PCIe Gen3 x8) 

Software specification
OS CentOS 7.3

GPU Compiler PGI Compiler 18.10

FPGA Compiler OpenARC V0.14 (April, 2019)

Host Compiler GCC 4.8.5

OpenCL 
Compiler

Intel FPGA SDK for OpenCL 17.1.2.304

* This comparison was 
done by hand-compilation  
before implementing  
MHOAT, preparing two 
OpenACC programs 
assuming operation of 
MHOAT.


