
Ryuta Tsunashima, Ryohei Kobayashi, Nrihisa Fujita, Ayumi Nakamichi, Taisuke Boku (University of Tsukuba, Japan)
Seyong Lee, Jeffrey Vetter (Oak Ridge National Laboratory, USA)
Hitoshi Murai, Mitsuhisa Sato (RIKEN Center for Computational Science, Japan)

Enabling OpenACC Programming on Multi-hybrid Accelerated
Cluster with GPU and FPGA

❖ Motivation

❖ MHOAT：meta-compiler

❖ Backend Compiler

❖ Evaluation

• GPU is the most popular Accelerator in HPC
• large scale SIMD (SIMT) fabric, high bandwidth memory
• But GPUs do not work well on application that employs

• (partially) poor parallelism
• non-regular computation (warp divergence)
• frequent inter-node communication

• FPGAs have been emerging in HPC
• true co-designing with applications
• making use of not only SIMD but also pipelining

• effectively processing partially poor parallelism
• high bandwidth interconnect: ~100 Gbps x 4

• We are challenging Multi-hybrid Accelerated Computing with GPU and FPGA
• However, currently users have to describe programs in two languages on different

devices: ex) CUDA for GPU and OpenCL for FPGA
• causing heavy effort for users

• We are building a uniform programming framework to make both devices work
together at a single code by OpenACC
• OpenACC is an API with directives for C, C++, Fortran for offloading to Accelerators

• high level abstraction more than CUDA or OpenCL
• easier solution than describing programs in tow languages

ACKNOWLEDGEMENT This research is partially supported by "Communication-Computation Unified Supercomputing" project under MEXT's "Next Generation Supercomputer R&D" program and Collaborative
Research between CCS, R-CCS and ORNL.

❖ Experiment of Compiling by MHOAT

❖ Unified Programming Framework
• how to use both devices simultaneously

• Current OpenACC compiler does not assume this situation

An OpenACC program

tasks on host

tasks on FPGA

tasks on GPU

enabling to write a
program performing GPU-
FPGA cooperative
computation in OpenACC

Exec
file

A single
OpenACC
program

GPU
calc.

FPGA
calc.

OpenACC
program
for GPU

OpenACC
program
for FPGA

OpenACC
programs

�

�
�

① Implementing a single OpenACC
program
•Specifying target devices

② Generating OpenACC programs
each for two devices

③ Final compilations are performed
by appropriate backend compiler
for each deviceOur approach overview

OpenACC
program

OpenACC
program

(a) Using of GPU only (b) Using of FPGA only (c) Using simultaneously

Allowed!! Allowed!! Not allowed...

OpenACC
program

GPU FPGA
GPU + FPGA

• Generating OpenACC programs for both devices and separately
compiling them into an executive binary file

• Tow backend compilers
• OpenARC for FPGA

• OpenARC: Open Accelerator Research Compiler
developed by FTG at ORNL

• Enabling OpenACC for FPGA programming
• Translating OpenACC code in C to OpenCL with C++,

then OpenCL code is compiled by background
compiler, Intel FPGA SDK for OpenCL

• PGI compiler for GPU
• Supporting OpenACC with C, C++ and Fortran

• C++ for linking with OpenCL host
• Compiling OpenACC to an object file directly

• Output parts by MHOAT are compiled by corresponding
backend compilers

• Finally, two object files are linked to a single executable file by
PGI compiler

OpenACC
Omni Compiler

OpenACC

XcodeML

An OpenACC program

tasks on host

tasks on FPGA

tasks on GPU
CPP

C-
Front
End

fpga.c

gpu.c

MHOAT

• MHOAT：Multi-Hybrid OpenACC Translator (Meta-compiler)
• currently supporting C (because OpenARC allow input only C)
• under development with restricted functionality

• Implemented with Omni Compiler developed by RIKEN R-CCS and CCS of
University of Tsukuba

1. Code is processed by CPP (C Preprocessor), then
2. Translated to intermediate code called “XcodeML” by C-FrontEnd,

and
3. Compiled by MHOAT

• Input：A single OpenACC program with directive to specify target devices
• We extended current OpenACC directive with

• #pragma accomn ondevice(DEVICE)
• “accomn” means extension in Omni Compiler
• DEVICE is GPU or FPGA (predefined)

• Splitting the corresponding OpenACC-directed parts out of original
code into two parts for GPU and FPGA

fpga.c

gpu.c

fpga
.o

gpu.o

fpga
.cl

a.out

Runtime

fpga
.aocx

pgc++

fpga
.cpp

PGI Compiler
(pgc++ -c)

fpga
.aoco

aoc -c aoc

pgc++
-c

OpenARC

OpenCL
kernel

OpenCL
host

OpenACC Object
files

Hardware specification

CPU
Intel Xeon Gold 6126
(12C / 2.6GHz) x2

Host Memory DDR4-2666 16GiB x12

GPU
NVIDIA Tesla V100
(32GiB HBM2 PCIe 3.0 x16) x4

FPGA
Intel Stratix 10 GX 2800
(BittWare 520N PCIe Gen3 x16) x2

Software specification
OS CentOS 7

GPU + Host Compiler PGI Compiler 19.1

FPGA Compiler OpenARC V0.17 (Oct, 2019)

OpenCL Compiler Intel FPGA SDK for OpenCL 19.1.0.240

CPU
0

CPU
1

PC
Ie netw

ork (sw
itch)

PC
Ie netw

ork (sw
itch)

GPU
GPUGPU
GPU

SINGLE NODE
(with FPGA)

HCA

FPGA
HCA
FPGA

HCA
HCA

N
etw

ork sw
itch (100G

bps x2)

N
etw

ork sw
itch (100G

bps x2)

Inter-FPGA
direct network
(100Gbps x4)

Inter-FPGA
direct network
(100Gbps x4)

Specification of Cygnus

• Realizing Multi-hybrid Accelerated Computing with GPU and FPGA from a process by
an OpenACC program described under Unified Programing Framework

• Evaluation on a simplified synthetic code
(NOT real application)
• vector add on GPU, then result is used for vector add calculation on FPGA
• Data communication between GPU and FPGA is perform via host memory (as shown)

• Result is verified with comparison on CPU version on Cygnus at CCS

FPGA GPUCPU

Program invoked

Recv data from GPU
&

Send data to FPGA

Vecadd on GPU

Send data to GPU

Vecadd on FPGA

Recv data from FPGA

Exec. flow

Program flow

be
tt

er

532

377

0

100

200

300

400

500

600

CUDA+OpenCL OpenACC

lin

es
 o

f c
od

e

30%
reduced

5,502 5,830

1275 1268399 511

6052

1104

0

2000

4000

6000

8000

10000

12000

14000

16000

CUDA+OpenCL OpenACC

#
 o

f
ch

ar
ac

te
rs

���CUDA
���OpenCL
���	GPU
���	FPGA
��

53%
reduced

be
tt

er

host code (CUDA)
host code (OpenCL)
GPU kernel
FPGA kernel
Others

be
tt

er

4664
7814

2094

7147

0
2000
4000
6000
8000

10000
12000
14000
16000

CUDA+OpenCL OpenACC

m
se

c

GPU
FPGA

Cygnus

line of code # characters of code Execution time
Pre-PACS version X (PPX)

• Our approach vs. traditional one
• Our approach: OpenACC*
• Traditional approach: CUDA + OpenCL

• Using a toy program (NOT real application) on PPX
• GPU：Performing matrix multiply
• CPU：Receiving a GPU result and sending it to FPGA
• FPGA：Performing the conjugate gradient method

• Programming cost comparison
• # lines of code

• Our approach reduced 30% of LOC
• # characters of code

• Our approach reduced 53% of characters
• GPU kernel and FPGA kernel in OpenACC are

corresponding to code blocks with directives
• Others: init function, validation function, etc.

• Execution time comparison
• GPU: 3.4x worse, FPGA: FPGA: 1.67x worse

• Because of no performance tuning
• Need to discuss FPGA parts with ORNL

	�����
���
���

���0

�
��

PCIe

�
��

�	� ������
�
��

�
��

�	� ������

QPI

�
��

node0

A computation node

Node of PPX

Hardware specification
CPU Intel Xeon E5-2660 v4 x2

Host Memory DDR4-2400 16GB x4

GPU NVIDIA Tesla P100 x2 (PCIe Gen3 x16)

FPGA Intel Arria 10 GX 1150 (BittWare
A10PL4)
(PCIe Gen3 x8)

Software specification
OS CentOS 7.3

GPU Compiler PGI Compiler 18.10

FPGA Compiler OpenARC V0.14 (April, 2019)

Host Compiler GCC 4.8.5

OpenCL
Compiler

Intel FPGA SDK for OpenCL 17.1.2.304

* This comparison was
done by hand-compilation
before implementing
MHOAT, preparing two
OpenACC programs
assuming operation of
MHOAT.

