
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Abstract

Recently, task-based execution has been attracting attention, because it can
reduce the waiting time from synchronization.
Ø Loop-based:
• Exploit data parallelism, and execute the same computation on different data.
• Use barrier between jobs to make sure the loop execution is already finished.
Ø Task-based:
• Exploit task parallelism, and execute different tasks in parallel.
• Use tasks and their dependencies to control the order of task execution. A

directed acyclic graph (DAG) is used to express the dependency.

Background: Task-based and loop-based 

Preliminary Evaluation towards Task Priority 
Control in HPX

Suhang Jiang, Mulya Agung, Ryusuke Egawa and Hiroyuki Takizawa

[1] Kaiser, Hartmut, et al. "HPX: A task based programming model in a global address space." Proceedings of the 8th International Conference on Partitioned Global Address Space Programming Models. ACM, 2014.
[2] Grubel, Patricia, et al. "The performance implication of task size for applications on the HPX runtime system." 2015 IEEE International Conference on Cluster Computing. IEEE, 2015.
[3] Cayrols, Sébastien, Iain Duff, and Florent Lopez. "Parallelization of the solve phase in a task-based Cholesky solver using a sequential task flow model." NLAFET Working Note (2018).
[4] Dorris, Joseph, et al. "Task-based Cholesky decomposition on knights corner using OpenMP." International Conference on High Performance Computing. Springer, Cham, 2016.

Problem & Motivation
High Performance ParalleX (HPX)

• A runtime system for parallel computing based on the partitioned global
address space (PGAS) model

• Provides a C++ class library to describe tasks and their dependencies

Task Priority Control
• All tasks are managed using a single

default task queue.
• Tasks will be assigned to HPX

threads in a thread pool in FIFO,
every task has the same execution
priority.

• The newest version of OpenMP supports task priority, resulting in higher
performance.

• For multi-node parallel processing systems such as HPX runtime system, there
is no task priority control until now.

Evaluation Results

Ø Only one default task queue:
• Tasks have the same priority, and wait in the task queue in a

FIFO fashion.
• Tasks will be executed as long as the dependencies among

tasks are not violated.
• The critical task can be blocked by other non-critical tasks.

Ø Two decoupled task queues:
• Choose the critical task.
• Set decoupled task queues and thread pools.
• Map the threads in cores.

Ø STEP 1: Choose the critical task.

• Find the critical path in the DAG.
o The longest path in the DAG, which has

more tasks than the other paths.

• Find the critical task in the critical path
o The task(s) that have the highest number

of occurrences in the critical path.

Ø STEP 2: Decoupled task queues and
thread pools.

o A higher priority is given to critical tasks in
the critical task queue.

• Tasks from the critical task queue go to the
critical thread pool, and the other tasks go
to the default thread pool.

• Whenever a worker thread becomes idle, an
HPX thread is retrieved from the thread
pool, and assigned to the worker thread.

Ø STEP 3: Using an NUMA-balanced method for mapping tasks.

• Different from the default thread mapping method, the NUMA-balanced
method will assign threads evenly to cores.

• More efficient by making better use of the resources.

Proposed Approach

0

5

10

15

20

25

30

35

Default (128, 160)(160, 128) (192, 96) (224, 64) (256, 32)

Ex
ec

ut
io

n 
tim

e

thread number in critical pool, default pool
default-banlanced default-banlanced(trend)

Conclusions and Future work

References and Acknowledgement

Ø This work proposed an approach to more efficient task-based execution based on
prioritizing critical tasks.

1. An algorithm is proposed to choose the critical task from the directed acyclic graph(DAG).
2. Decoupled task queues and thread pools can increase the performance.
3. NUMA-balanced method can further increase the performance.

Ø Future work:
• A different task-based application may have more critical tasks. Thus, different

applications with more critical tasks will be evaluated, so that using three or
more tasks queues could potentially help achieving higher efficiency.

• Different thread mapping methods will also be evaluated.

0

5

10

15

20

25

30

35

Default (128, 160) (160, 128) (192, 96) (224, 64) (256, 32)

Ex
ec

ut
io

n 
tim

e

thread number in critical pool, default pool

default-banlanced NUMA-balanced
default-banlanced(trend) NUMA-balanced(trend)

The execution time using decoupled task queues in Intel
Xeon Phi KNL, matrix size = 512 * 512

The execution time using decoupled task queues and NUMA-balanced
thread mapping in Intel Xeon Phi KNL, matrix size = 512 * 512

Ø Environment: Intel Xeon Phi Knight Landing
Ø Benchmark program: Cholesky factorization
• A decomposition of a Hermitian positive-definite matrix A is a decomposition

into the form of 𝐴=𝐿𝐿T

o By increasing the number of threads in the critical pool manually, the
proposed implementation can increase the performance by 31.76% in terms
of execution time.

o Based on decoupled task queues, using the NUMA-balanced thread mapping
method can further increase the performance by 4.8%.

This work is partially supported by MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D Program "R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastructure and 
its Applications," and Grant-in-Aid for Scientific Research(B) #17H01706.


