
Implementing the Tascell Task-Parallel Language Tascell
Using Multithreaded MPI

The Tascell Language

Performance Evaluatinos

n Implementation using MPI with the MPI_THREAD_FUNNELED support
[D. Muraoka et al., P2S2 2016]

n Computation nodes communicate directly with other nodes 
(serverless implementation)

n Each node employs a messaging thread
n The messaging thread iterates the following operations

1. checks an incoming message using MPI_Iprobe() and receives it using  
MPI_Recv()

2. sleeps 𝑡"#$ msec
3. If the previous MPI_Isend() has finished, checks an incoming message 

in the request queue and sends it with MPI_Isend()
n A worker thread asks the messaging thread to send a message by adding it 

to the request queue
n Pros: works using MPI only with the MPI_THREAD_FUNNELED support
n Cons: a messaging thread uses busy-waiting for waiting both incoming and 

outgoing messages

n Each node is connected to Tascell Server
n Tascell Servers relay inter-node communications
n Pros: new computation nodes can be added during computation
n Pros: supports widely distributed memory environments
n Cons: supercomputers often do not support TCP/IP
n Cons: Tascell servers can become bottlenecks

Implementations using Multithreaded MPI

n Implementation using MPI with the 
MPI_THREAD_MULTIPLE support and two-
sided communications
n A worker thread sends messages directly to another node 

using MPI_Send()
n Each node employs the two service threads:

n The receiving thread
n a1. waits an incoming message using     

MPI_Probe(), and receives it using MPI_Recv(), and
a2. adds the received message to the message queue

n The handling thread
b1. takes a message from the message queue and
b2. performs an action specified by the message

n We cannot let the messaging thread perform actions, 
because that can result in deadlock if the thread sends
a new message during the action

n Pros: Busy-waiting free implementation
n Pros: the delay for sending messages can be reduced
n Pros: message receiving and actions for messages can be 

executed in parallel

Implementation using Singlethreaded MPI

n Tascell
n Extended C language that achieves high performance in

irregular applications [T. Hiraishi et al., PPoPP 2009]
n A worker executes its own task sequentially and does not create tasks until 

it receives task requests
n When a worker (victim) receives a task request from another worker (thief),

1. it temporarily backtracks to the past state
2. spawns a task and sends it to the thief worker
3. returns from the backtracking
4. resumes its own task

n A worker can delay copying workspaces 
and reuse it

n Supports distributed memory environments 
using TCP/IP or MPI
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for(;;) {
MPI_Iprobe(...);
if(/* any incoming messages? */) {

MPI_Recv(...);
perform an action specified by the message

}
sleep(t_slp);
if(sending_message) {

MPI_Test(...);
if(/* is previous MPI_Isend finished? */) {

sending_message = false;
}

} else {
if(/* any entries in the send queue */) {

dequeue an entry
MPI_Isend(...);
sending_message = true;

}
}

}  

n Implementation using MPI with the MPI_THREAD_MULTIPLE support and one-sided 
communications
n Each computation node has a ring buffer, to which workers in external nodes put messages
n Each node employs two service threads:

n The handling thread takes received messages from the tail of the ring buffer and performs actions 
specified by the messages

n The notification thread waits for notifications from workers in external nodes using MPI_Recv() and 
notifies the handling thread that there are incoming messages

n A worker thread performs the following operations when sending a message
1. gets and updates the tail of the ring buffer using MPI_Get_accumulate()
2. acquires the lock of the ring buffer using MPI_Win_lock()
3. sends the msssage using MPI_Put() calls
4. releases the lock of the ring buffer using MPI_Win_unlock()
5. sends a notification to the notification thread of the recipient node using

MPI_Send()
n Pros: redundant memory copy operations can be eliminated

n In the implementations using two-sided communications, a worker needs to 
pack an outgoing message into a buffer before sending it
n because structures of sending data are defined in Tascell programs and 

not statically fixed. It is tough to send such data using two-sided 
communications without packing

n In the implementation using one-sided communications, packing operations
are not necessary because such data can be sent directly using multiple
MPI_Put() calls

n Cons: the number of MPI communications per message increases
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n Performance on Xeon Cluster
n CPU: Xeon Broadwell 2.1GHz 18-core x 2 (36 workers / node)

Interconnect: Omni-Path (injection BW = 12GB/s)
Memory: 128GB, Intel Compiler 17.0.6, Intel MPI 2017.4 (-O2)

n Applications:
n Fib: recursively computes the n-th Fibonacci number
n Nq: finds all solutions to the n-queens problem
n Pen: finds all solutions to the Pentomino problem
n Comp: compares array elements 𝑎+ and 𝑏- in 0 ≤ 𝑖, 𝑗 < 𝑛

n Results:
n The implementation using the MPI_THREAD_MULTIPLE support and two-sided communications shows 

slightly better performance than the MPI_THREAD_FUNNELED based implementation except for Comp,
probably due to shorter communication delays

n The implementation using one-sided communications shows the worst performance in almost all the 
measurements. However, it shows the best performance in the 2-node executions of Comp, probably 
due to higher communication throughput when sending large array data
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Psuedo code for the messaging thread
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Implementation using TCP/IP
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Efficiency is defined as S/n where S is a speedup to a sequential C program and n is the number of workers. 
(Efficiency = 1 means an ideal speedup.)


