
Implementing the Tascell Task-Parallel Language Tascell
Using Multithreaded MPI

The Tascell Language

Performance Evaluatinos

n Implementation using MPI with the MPI_THREAD_FUNNELED support
[D. Muraoka et al., P2S2 2016]

n Computation nodes communicate directly with other nodes
(serverless implementation)

n Each node employs a messaging thread
n The messaging thread iterates the following operations

1. checks an incoming message using MPI_Iprobe() and receives it using
MPI_Recv()

2. sleeps 𝑡"#$ msec
3. If the previous MPI_Isend() has finished, checks an incoming message

in the request queue and sends it with MPI_Isend()
n A worker thread asks the messaging thread to send a message by adding it

to the request queue
n Pros: works using MPI only with the MPI_THREAD_FUNNELED support
n Cons: a messaging thread uses busy-waiting for waiting both incoming and

outgoing messages

n Each node is connected to Tascell Server
n Tascell Servers relay inter-node communications
n Pros: new computation nodes can be added during computation
n Pros: supports widely distributed memory environments
n Cons: supercomputers often do not support TCP/IP
n Cons: Tascell servers can become bottlenecks

Implementations using Multithreaded MPI

n Implementation using MPI with the
MPI_THREAD_MULTIPLE support and two-
sided communications
n A worker thread sends messages directly to another node

using MPI_Send()
n Each node employs the two service threads:

n The receiving thread
n a1. waits an incoming message using

MPI_Probe(), and receives it using MPI_Recv(), and
a2. adds the received message to the message queue

n The handling thread
b1. takes a message from the message queue and
b2. performs an action specified by the message

n We cannot let the messaging thread perform actions,
because that can result in deadlock if the thread sends
a new message during the action

n Pros: Busy-waiting free implementation
n Pros: the delay for sending messages can be reduced
n Pros: message receiving and actions for messages can be

executed in parallel

Implementation using Singlethreaded MPI

n Tascell
n Extended C language that achieves high performance in

irregular applications [T. Hiraishi et al., PPoPP 2009]
n A worker executes its own task sequentially and does not create tasks until

it receives task requests
n When a worker (victim) receives a task request from another worker (thief),

1. it temporarily backtracks to the past state
2. spawns a task and sends it to the thief worker
3. returns from the backtracking
4. resumes its own task

n A worker can delay copying workspaces
and reuse it

n Supports distributed memory environments
using TCP/IP or MPI

Tascell Server

Worker

Worker

TCP/IP

Worker

Worker

Node 0

Worker

Messaging
Thread

Worker

Node 1

Worker

Messaging
Thread

Worker

Node 2

Worker

Messaging
Thread

Worker

Node 3

Worker

Messaging
Thread

Worker

for(;;) {
MPI_Iprobe(...);
if(/* any incoming messages? */) {

MPI_Recv(...);
perform an action specified by the message

}
sleep(t_slp);
if(sending_message) {

MPI_Test(...);
if(/* is previous MPI_Isend finished? */) {

sending_message = false;
}

} else {
if(/* any entries in the send queue */) {

dequeue an entry
MPI_Isend(...);
sending_message = true;

}
}

}

n Implementation using MPI with the MPI_THREAD_MULTIPLE support and one-sided
communications
n Each computation node has a ring buffer, to which workers in external nodes put messages
n Each node employs two service threads:

n The handling thread takes received messages from the tail of the ring buffer and performs actions
specified by the messages

n The notification thread waits for notifications from workers in external nodes using MPI_Recv() and
notifies the handling thread that there are incoming messages

n A worker thread performs the following operations when sending a message
1. gets and updates the tail of the ring buffer using MPI_Get_accumulate()
2. acquires the lock of the ring buffer using MPI_Win_lock()
3. sends the msssage using MPI_Put() calls
4. releases the lock of the ring buffer using MPI_Win_unlock()
5. sends a notification to the notification thread of the recipient node using

MPI_Send()
n Pros: redundant memory copy operations can be eliminated

n In the implementations using two-sided communications, a worker needs to
pack an outgoing message into a buffer before sending it
n because structures of sending data are defined in Tascell programs and

not statically fixed. It is tough to send such data using two-sided
communications without packing

n In the implementation using one-sided communications, packing operations
are not necessary because such data can be sent directly using multiple
MPI_Put() calls

n Cons: the number of MPI communications per message increases

Node 𝑗Node 𝑖

MPI_Win_unlock

MPI_Win_lock

MPI_Put

MPI_Put

MPI_Send

Get and update the tail address
of the ring buffer

𝑛(

𝑛)

redo

redoundo

undo

Send a task

1.

2.

3.

4.

n Performance on Xeon Cluster
n CPU: Xeon Broadwell 2.1GHz 18-core x 2 (36 workers / node)

Interconnect: Omni-Path (injection BW = 12GB/s)
Memory: 128GB, Intel Compiler 17.0.6, Intel MPI 2017.4 (-O2)

n Applications:
n Fib: recursively computes the n-th Fibonacci number
n Nq: finds all solutions to the n-queens problem
n Pen: finds all solutions to the Pentomino problem
n Comp: compares array elements 𝑎+ and 𝑏- in 0 ≤ 𝑖, 𝑗 < 𝑛

n Results:
n The implementation using the MPI_THREAD_MULTIPLE support and two-sided communications shows

slightly better performance than the MPI_THREAD_FUNNELED based implementation except for Comp,
probably due to shorter communication delays

n The implementation using one-sided communications shows the worst performance in almost all the
measurements. However, it shows the best performance in the 2-node executions of Comp, probably
due to higher communication throughput when sending large array data

Tascell Server

Node 0 Node n

Psuedo code for the messaging thread

Daiki Kojima1), Tasuku Hiraishi2), Hiroshi Nakashima2), Masahiro Yasugi3)

1) Graduate School of Informatics, Kyoto University 2) Academic Center for Computing and Media Studies, Kyoto University 3) Department of Artificial Intelligence, Kyushu Institute of Technology

Implementation using TCP/IP

…

Node 𝑗Node 𝑖

Message
Queue

message
message
message

Receiving
Thread

Handling
Thread

messagemessage
a1

a2

b1

b2: action

MPI_Send

Worker
Thread

Worker
Thread… Worker

Thread
Worker
Thread…

Receiving
Thread

Handling
Thread

Message
Queue

message

Efficiency is defined as S/n where S is a speedup to a sequential C program and n is the number of workers.
(Efficiency = 1 means an ideal speedup.)

