
c

Prototype

Types of Virtualized Environments

Challenge & Solution

Background

System Software Support for Fast and Flexible Task Management
on a Large-scale FPGA cluster

Atsushi Koshiba, Kentaro Sano
RIKEN Center for Computational Science (R-CCS)

n Proposal: OS-driven Task Pipelining
üA kernel module (PPM) manages devices directly from a kernel layer
• eliminate switching user/kernel mode ⇒ 1.8x speed up [1]

ü Challenge: how to support a programming interface for PPM

n Implementing a prototype on Zynq Ultrascale+ SoC
üA hypervisor (KVM) and unikernel (solo5) are running on Zynq SoC
üAlso planning to implement our system on a realistic cloud server

system (x86 server with Alveo U250)

n Unikernels are suitable for FPGA virtualization
üGuest OS : Secure but high virtualization overhead
ü Container : low overhead but less secure than Guest OS
üUnikernel : Secure (isolated) and low-overhead

n System software support for FPGA clusters is early-stage
ü Existing work: FPGAs are statically allocated to each VM instance

→ large overhead, low resource usage, low scalability
üOur proposal: FPGAs are dynamically allocated to each application

→ low overhead, flexible load balancing & auto scaling

n Requirements for Virtualized Execution Environments
ü Isolation : each app is isolated and not interfered each other
ü Virt. overhead : I/O control overhead should be avoided
ü Programmability : existing app code (e.g., OpenCL) is runnable
ü Elasticity : auto scaling and load balancing

Proposed Mechanism
n Fast and flexible FPGA virtualization using unikernels
ü Each app is running on its dedicated unikernel independently
üHypervisor (VMM) mediates unikernel apps that require FPGAs

n Para virtualization of FPGAs
üUnikernels provide heterogeneous programming libraries (e.g.,

OpenCL) that allows apps to manage virtualized FPGA devices
ü Prevent unikernels from mapping the same FPGA address space

→ensure isolation & programmability

n Unikernel scheduler & Load balancer
ü VMM decides which nodes/FPGAs should be allocated to unikernels

aps according to their demands and FPGA usage
ü Partial Reconfiguration (PR) makes single FPGA sharable among apps
ü Resource allocation is dynamically changed if a node or FPGA

becomes more/less busy →ensure elasticity

Future Work
n Implementation and Evaluation of our system
ü Evaluate baseline performance with Zynq SoC/Alveo card
ü Consider applicability of our system to other accelerators (e.g., GPU)
ü Implement realistic applications (e.g., FFT, fluid simulation)

Acknowledgments: This research was supported by JSPS KAKENHI Grant Number
19K24360.

[1] Amazon AWS, Amazon EC2 F1 Instances, https://aws.amazon.com/ec2/instance-types/f1/?nc1=h_ls
[2] Tsukuba University, Cygnus, https://www.ccs.tsukuba.ac.jp/eng/supercomputers/
[3] Miyajima+, “High-Performance Custom Computing with FPGA Cluster as an Off-loading Engine,” SC’19, poster.

n High-performance Computing with FPGAs
ü FPGAs scale the performance for specific tasks more than CPUs
• e.g., stencil computation, machine learning, FFT

ü Large-scale FPGA clusters are getting more popular in cloud/HPC:
• Data center : Amazon EC2 F1 (Amazon AWS) [1]
• Supercomputers : Cygnus (Tsukuba Univ.) [2], FPGA cluster (RIKEN) [3]

n FPGA sharing among users/apps are challenging
ü Shared among different users and massive applications

→ data isolation, load balancing, performance scaling are essential

Linux

Zynq Ultrascale+ board (UltraZed)

ARM CPU
FPGA

KVM

Unikernel

ukvm

vOpenCL Library

OpenCL Library

OpenCL app

FPGA driver
Host OS

Host user

user logic

allocate FPGA manage FPGA

requests

FPGA req.

call APIs

I/O

solo5guest

→ Propose a unikernel-based FPGA virtualization system &
a mechanism to support programmability and elasticity

VMM

(1) Guest OS

Guest OS

app

VMM

(3) Unikernel
app

UnikernelGuest OS

OSContainer

app

Container

app

(2) Container

app
Unikernel

app

accelerator accelerator accelerator

Cygnus [2]

Name FPGAs vCPUs memory Price/hour
f1.2xlarge 1 8 122 GiB $1.65

f1.16xlarge 8 64 976 GiB $13.20

Instance types of Amazon EC2 F1 [1]

app A

unikernel

Node 1

VMM

FPGA

Node 2

app D

unikernel

app C

unikernel

VMM

FPGA

vFPGA lib

Node 3

VMM

FPGA

Node 4

VMM

FPGA

app B

unikernel
vFPGA lib

PR region

kernel A1

PR region
kernel F
kernel E

PR region
kernel B

PR region

kernel D

vFPGA lib vFPGA lib
app E

unikernel
vFPGA lib

app F

unikernel
vFPGA lib

kernel A2

scheduler
load balancer

vFPGA device vFPGA device

scheduler
load balancer

vFPGA device vFPGA device

FPGA

Hypervisor

Virtual Machine

app

FPGA

FPGA

FPGA

FPGA FPGA FPGA

…
…

…

Existing approach (e.g., Amazon EC2 F1) Our approach

app

FPGA FPGA

FPGA FPGA
FPGA

FPGA

FPGA

VM
thin OS

app

Hypervisor (e.g., KVM)

FPGA

FPGA

FPGA

OS
app scheduling

Virtual Machine VM
thin OS

app

VM
thin OS

app

VM
thin OS

app
OS

app scheduling
…

…

pinned

static resource allocation
VM scheduling

app … appapp app …

app scheduling load balancing
dynamic resource allocation auto scaling

Dynamically
allocated &
released

deploy

https://aws.amazon.com/ec2/instance-types/f1/?nc1=h_ls
https://www.ccs.tsukuba.ac.jp/eng/supercomputers/

