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n Proposal: OS-driven Task Pipelining
üA kernel module (PPM) manages devices directly from a kernel layer
• eliminate switching user/kernel mode ⇒ 1.8x speed up [1]

ü Challenge: how to support a programming interface for PPM

n Implementing a prototype on Zynq Ultrascale+ SoC
üA hypervisor (KVM) and unikernel (solo5) are running on Zynq SoC
üAlso planning to implement our system on a realistic cloud server 

system (x86 server with Alveo U250)

n Unikernels are suitable for FPGA virtualization
üGuest OS : Secure but high virtualization overhead
ü Container : low overhead but less secure than Guest OS
üUnikernel : Secure (isolated) and low-overhead

n System software support for FPGA clusters is early-stage
ü Existing work: FPGAs are statically allocated to each VM instance

→ large overhead, low resource usage, low scalability
üOur proposal: FPGAs are dynamically allocated to each application

→ low overhead, flexible load balancing & auto scaling

n Requirements for Virtualized Execution Environments
ü Isolation : each app is isolated and not interfered each other
ü Virt. overhead : I/O control overhead should be avoided
ü Programmability : existing app code (e.g., OpenCL) is runnable
ü Elasticity : auto scaling and load balancing

Proposed Mechanism
n Fast and flexible FPGA virtualization using unikernels
ü Each app is running on its dedicated unikernel independently
üHypervisor (VMM) mediates unikernel apps that require FPGAs

n Para virtualization of FPGAs 
üUnikernels provide heterogeneous programming libraries (e.g., 

OpenCL) that allows apps to manage virtualized FPGA devices
ü Prevent unikernels from mapping the same FPGA address space

→ensure isolation &  programmability

n Unikernel scheduler & Load balancer 
ü VMM decides which nodes/FPGAs should be allocated to unikernels

aps according to their demands and FPGA usage
ü Partial Reconfiguration (PR) makes single FPGA sharable among apps
ü Resource allocation is dynamically changed if a node or FPGA 

becomes more/less busy →ensure elasticity

Future Work
n Implementation and Evaluation of our system
ü Evaluate baseline performance with Zynq SoC/Alveo card
ü Consider applicability of our system to other accelerators (e.g., GPU)
ü Implement realistic applications (e.g., FFT, fluid simulation)
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n High-performance Computing with FPGAs
ü FPGAs scale the performance for specific tasks more than CPUs
• e.g., stencil computation, machine learning, FFT

ü Large-scale FPGA clusters are getting more popular in cloud/HPC:
• Data center : Amazon EC2 F1 (Amazon AWS) [1]
• Supercomputers : Cygnus (Tsukuba Univ.) [2], FPGA cluster (RIKEN) [3]

n FPGA sharing among users/apps are challenging
ü Shared among different users and massive applications

→ data isolation, load balancing, performance scaling are essential
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→ Propose a unikernel-based FPGA virtualization system &
a mechanism to support programmability and elasticity
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Name FPGAs vCPUs memory Price/hour
f1.2xlarge 1 8 122 GiB $1.65

f1.16xlarge 8 64 976 GiB $13.20

Instance types of Amazon EC2 F1 [1]
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