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1. INTRODUCTION 
In this study, we aim to develop a software auto-tuning (AT) 

mechanism with AI to reduce the man-hours required for 

performance tuning in the field of numerical computations. We 

show an example of explainability of a result by machine learning 

(ML) when ML is applied to a case study of performance parameter 

tuning on a library for verified numerical computations. 

2. OZAKI METHOD 
The following (1) and (2) are performed on the input matrices in 

Ozaki method [2], which is a numerical algorithm for accurate 

matrix-matrix multiplication (MMM): (1) Split the matrices A and 

B into p and q matrices, respectively. (2) Compute split matrices’ 

products AjBk (j=1, … , p, k=1, … , q), and add them using the 

accurate sum algorithm. 

The matrix product in the process (2) is transformed into an 

error-free operation with this method [2]. In addition, on the 

splitting process of process (1), a sparse matrix is generated 

according to range of elements of the input matrices:  

In this study, for the MMM in the process (2), we use a dgemm 

on CPU and GPU. In addition, 11 implementations of sparse matrix 

operations on CPU or GPU are utilized[3]. We constructed a 

machine learning (ML) model to predict which implementation is 

the fastest. We explained the prediction results of the classifier 

using LIME [1], which can examine how much each feature 

contributes to the classification. 

3. PRELIMINARY RESULT 
We used the supercomputer "Flow" Type II subsystem installed at 

the Information Technology Center, Nagoya University to acquire 

the training data for ML, and Version 0.2.0.1 of LIME was used. 

The input data (matrices A and B) are: (1) a matrix whose 

elements are generated in range of 0 to 1, and values of pow (10, 

rand()%Φ) are inserted for some sparsity elements (the upper limit 

is Φ=15); (2) a unit matrix in which values in the range 0 to 1 are 

inserted for some sparsity elements (sparsity 90 to 98); (3) a unit 

matrix in which values  pow(10, rand()%Φ) are inserted for some 

sparsity elements (upper limit is Φ=15);  

The ML model (classifier) is xgboost, ver.1.4.2, and we 

predict the fastest implementation of those described in Chapter 2. 

The matrix sizes are 1000, 1500, 2000, 2500, 3000, and 4000 (only 

(2)). Numbers of training data and test data are 199 and 23, 

respectively. 

 

Fig. 1. A result of LIME. 

There are following 7 explanatory variables for the classifier: 

1) matrix size; 2) sparsity; 3) the maximum element of A; 4) the 

minimum element of A; 5) number of sparse split matrices of A; 6) 

number of dense split matrices of A; 7) number of split matrices of 

B. 

Accuracy of the model is from 83% to 96% depending on how 

the data is taken, and the results of LIME when the accuracy is 

about 96% are shown in Fig. 1. In Fig. 1, SpMV with CRS (multiple 

right-hand-sides, internal parallelism) on CPU is the fastest on the 

prediction. High sparsity was analyzed as a positive factor. In fact, 

this implementation is often faster when the sparsity is high. Hence 

this is reasonable explanation. Large matrix size was also analyzed 

as a negative factor. In fact, when the matrix size is larger than 2500, 

SpMM with CRS on GPU is often the fastest. Hence this indicates 

reasonable explanation. 
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