
Feature analysis for selection of implementations

in an accurate matrix-matrix multiplication library
Shota Aoki

Nagoya University
Japan

aoki@hpc.itc.nagoya-u.ac.jp

Satoshi Ohshima

Nagoya University
Japan

ohshima@cc.nagoya-u.ac.jp

Takahiro Katagiri
Nagoya University

Japan

katagiri@cc.nagoya-u.ac.jp

Toru Nagai

Nagoya University
Japan

nagai@cc.nagoya-u.ac.jp

1. INTRODUCTION
In this study, we aim to develop a software auto-tuning (AT)

mechanism with AI to reduce the man-hours required for

performance tuning in the field of numerical computations. We

show an example of explainability of a result by machine learning

(ML) when ML is applied to a case study of performance parameter

tuning on a library for verified numerical computations.

2. OZAKI METHOD
The following (1) and (2) are performed on the input matrices in

Ozaki method [2], which is a numerical algorithm for accurate

matrix-matrix multiplication (MMM): (1) Split the matrices A and

B into p and q matrices, respectively. (2) Compute split matrices’

products AjBk (j=1, … , p, k=1, … , q), and add them using the

accurate sum algorithm.

The matrix product in the process (2) is transformed into an

error-free operation with this method [2]. In addition, on the

splitting process of process (1), a sparse matrix is generated

according to range of elements of the input matrices:

In this study, for the MMM in the process (2), we use a dgemm

on CPU and GPU. In addition, 11 implementations of sparse matrix

operations on CPU or GPU are utilized[3]. We constructed a

machine learning (ML) model to predict which implementation is

the fastest. We explained the prediction results of the classifier

using LIME [1], which can examine how much each feature

contributes to the classification.

3. PRELIMINARY RESULT
We used the supercomputer "Flow" Type II subsystem installed at

the Information Technology Center, Nagoya University to acquire

the training data for ML, and Version 0.2.0.1 of LIME was used.

The input data (matrices A and B) are: (1) a matrix whose

elements are generated in range of 0 to 1, and values of pow (10,

rand()%Φ) are inserted for some sparsity elements (the upper limit

is Φ=15); (2) a unit matrix in which values in the range 0 to 1 are

inserted for some sparsity elements (sparsity 90 to 98); (3) a unit

matrix in which values pow(10, rand()%Φ) are inserted for some

sparsity elements (upper limit is Φ=15);

The ML model (classifier) is xgboost, ver.1.4.2, and we

predict the fastest implementation of those described in Chapter 2.

The matrix sizes are 1000, 1500, 2000, 2500, 3000, and 4000 (only

(2)). Numbers of training data and test data are 199 and 23,

respectively.

Fig. 1. A result of LIME.

There are following 7 explanatory variables for the classifier:

1) matrix size; 2) sparsity; 3) the maximum element of A; 4) the

minimum element of A; 5) number of sparse split matrices of A; 6)

number of dense split matrices of A; 7) number of split matrices of

B.

Accuracy of the model is from 83% to 96% depending on how

the data is taken, and the results of LIME when the accuracy is

about 96% are shown in Fig. 1. In Fig. 1, SpMV with CRS (multiple

right-hand-sides, internal parallelism) on CPU is the fastest on the

prediction. High sparsity was analyzed as a positive factor. In fact,

this implementation is often faster when the sparsity is high. Hence

this is reasonable explanation. Large matrix size was also analyzed

as a negative factor. In fact, when the matrix size is larger than 2500,

SpMM with CRS on GPU is often the fastest. Hence this indicates

reasonable explanation.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI (Grant No.

JP19H05662), and was supported by "Joint Usage/Research Center

for Interdisciplinary Large-scale Information Infrastructures" in

Japan (Project ID: jh210002-NAHI).

REFERENCES
[1] M. T. Ribeiro, S. Singh, and C. Guestrin: Why should I trust

you?: Explaining the predictions of any classifier, Proc. of

22nd ACM SIGKDD, pp.1135-1144, 2016.

[2] K．Ozaki，T．Ogita，S．Oishi，S．M．Rump: Error-

Free Transformation of Matrix Multiplication by Using Fast

Routines of Matrix Multiplication and its Applications

Numerical Algorithms，Vol．59，No．1，pp．95-118，

2012．

[3] F. Ishiguro, T. Katagiri, S. Ohshima, T. Nagai: Performance

Evaluation of Accurate Matrix–Matrix Multiplication on

GPU Using Sparse Matrix Multiplications, Proc. of

CANDARW2020, IEEE Xplore, 2020.

