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Introduction

Multiphysics-based earthquake simulation
• is expected to contribute to estimation and 

mitigation of earthquake damage
• entails high computational cost especially in 3D 

simulation

GPU-accelerated method
• We developed a high-performance method for 

seismic wave propagation simulation with finite 
element method (FEM) considering a complex 
multiphysics phenomenon, soil liquefaction [1]

• Load balancing scheme that considers GPU 
architecture and characteristics of soil liquefaction 
simulation was adopted

• A 10.7-fold speed up over CPU-based 
implementation was achieved

Neural network based surrogate model
• HQC (high quality computing) considering 

uncertainty of information (e.g., soil properties, 
ground structure) is important
→ Many cases of 3D simulation are required

• Not realistic to perform 3D simulation for 
hundreds times, even with the developed method

• We constructed a neural network (NN) based 
surrogate model to enable faster judgement of soil 
liquefaction with over 90% accuracy

Multiphysics-based Simulation

Multiphysics Problem
• Complex dynamic multiphysics 

problem in which soil behaves 
highly nonlinearly as it gets 
liquefied and phase transition 
from solid to liquid occurs

• Strain space multiple mechanism 
model (Iai, et al 1992, Iai 1993): 3D constitutive 
law that is expressed as a superposition of 300 of 
1D springs

• Computation can be unstable, but it is overcome  
with a stabilization method (Kusakabe et al. 2021)

Governing Equation
Motion equation of soil

𝜌
𝜕2𝒖

𝜕𝒕
−
𝜕𝝈

𝜕𝒙
= 𝒇

discretized with FEM and Newmark β method

Sparse matrix equation with 1 million – 1 billion DOFs 

𝑨𝛿𝒖 = 𝒃
solved over 10 K time steps using conjugate gradient 
(CG)-based method (𝑨 is updated every time step)

GPU-accelerated Simulation

CG-based method to solve the equation
• Adaptive CG method is used
• In preconditioner, preconditioning

equation 𝑨𝒛 = 𝒓 is solved with 

the preconditioned CG method
• Multigrid method and mixed 

precision are used in preconditioner 
to reduce computational cost 
without compromising the solution 
accuracy

• Whole simulation is parallelized with MPI and OpenACC

Load Balancing

• Load balance is improved → high parallel efficiency
• More sequential memory access → suitable for GPU computing

MPI communication with a 21-bit data type
• Computation is accelerated by GPU;

communication is not
→ Communication can be a bottleneck

• FP21 variables are used in MPI
communication in preconditioner

• 3 x FP21 variables (63 bits) are packed to a double precision variable (64 bits) and 
communicated among GPUs

Performance measurement

• Comparison of large-scale simulation

Developed method enables faster simulation with smaller computation environment
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𝛿𝒖 ⇐ 𝛿𝒖0, 𝒓 ⇐ 𝒃 − 𝑨𝛿𝒖

do while (| 𝒓 |/| 𝒃 | < 𝜀tol )

Solve 𝑨𝒛 = 𝒓

use 𝒛 to update 𝛿𝒖

𝒓 ⇐ 𝒃 − 𝑨𝛿𝒖

end while

Preconditioner

Solve 𝑨𝒛 = 𝒓
with PCG on
a coarse mesh

Solve 𝑨𝒛 = 𝒓
with PCG on 
the original mesh

Use as initial solution

[In single precision]
[In double precision]
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exponent fractionsign
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Single precision
(32 bits)

FP21 (21 bits)
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Solve equation constitutive law other

GPU + FP21

Oakforest-PACS
128 computing nodes × 14 h 37 min

(1 Intel Xeon Phi 7250 CPU/node)

ABCI
13 computing nodes × 3 h 33 min

(4 NVIDIA Tesla V100 SXM2 GPUs/node)

Wharf

89,146,716 DOFs
30,000 time steps

#0 #1 #2 #0 #1 #2

GPU #0 GPU #1 GPU #2

Conventional data alignment

Reordered data alignment

Rearrangement of elements
GPU#0 GPU#1 GPU#2

Revised partitioning

Conventional
partitioning

GPU #0

GPU #1

GPU #2

Revised domain partitioning

Input: thickness of each layer 𝑥0, 𝑥1, 𝑥2, 𝑥3
• Sampled at 1 m intervals
• Based on earthquake 

engineering knowledge 
that thickness and depth 
of liquefiable layer have 
influence on likelihood of 
soil liquefaction

𝑥0
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𝑥2

𝑥3

Non-liquefiable 
layer

Liquefiable layer

Bedrock 

Output: whether soil gets liquefied 

Liquefiable 
layer

1m

• Judge to be liquefied 
when the max. of 
excess pore water 
pressure ratio (*) in 
the orange region is 
larger than 0.9

(*): an index of soil liquefaction 
0: not liquefied; 1: completely liquefied
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# of 
hidden 
layers

# of 
units in 
hidden 
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2 5

2 10

2 20

3 5

3 10

3 20

4 5

4 10

4 20

Accuracy for target soil model

Estimation results
• Accuracy of more than 90%

Conclusion
• This poster presents an example method to realize HQC on complex nonlinear 

problems by efficiently combining capability and capacity computing and NN
• With GPU-accelerated Multiphysics-based simulation and surrogate models 

constructed from its results, it is expected that more advanced evaluation of 
earthquake response can be performed with smaller computation cost and time
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(*) # of hidden layers = 4, # of units in hidden layers = 5

Without high performance computing: 282K DOFs × 40K time steps → 1 CPU × 1 month

• Utilizing domain specific knowledge, a surrogate model 
of complex soil liquefaction simulation was successfully
constructed with relatively a small neural network

• Training data were generated such that its statistical
information is similar to that of the target soil model, 
leading to efficient training with a relatively small number of training data

• Comparison on a compute node on AI 
Bridging Cloud Infrastructure [2] (ABCI)

4,854,570 DOFs, 100 time steps
2 CPUs (Intel Xeon Gold 6148)
4 GPUs (NVIDIA Tesla V100 SXM2)
10.7-fold speedup by using GPUs

Training

• Loss function: cross entropy loss
• Optimizer: Adam (𝛽1 = 0.9, 𝛽2 = 0.999, learning rate = 10−4)

42,867,001 elements
94,286,505 DOFs

Target soil model

Latin hypercube 
sampling of
layer depth

10 models, 200m×200m×~60m
0.4 million elements, 1 million DOFs

Soil models for training NN

• Number of epochs: 50

90% reduction in 
computational cost 

of simulation


