
Advanced Software Laboratory High Performance Computing Laboratory
先進ソフトウェア研究室 高性能計算研究室

Introduction
In large-scale scientific computing programs, parallelization by MPI communication is generally used. MPI is convenient because it can be

executed on many computers. However, interprocess communication often becomes a bottleneck in highly parallel computers [1].

In this research, we measured and compared the performance of MPI, RDMA, and RDMA with double buffering for adjacent communication.

Numerical experiment

Conclusion

MPI, RDMA, and RDMA with double buffering were evaluated using simple adjacent communication with various number of

neighboring processes and different total process numbers. It showed that RDMA was faster than MPI as the number of adjacent

processes increased. In addition, RDMA with double buffering reduced synchronization and was the most efficient communication

method of the three by up to 30%.

Further research on the way to apply this technique to application programs using adjacent communication.

RDMA with Double Buffering for
Adjacent Communication

Kota Yoshimoto, Akihiro Fujii, Teruo Tanaka

Kogakuin University

Acknowledgments

This work is supported by “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” and “High

Performance Computing Infrastructure” in Japan (Project ID: jh210026-NAH).

Reference

[1] Kanamori Issaku, et al., Acceleration of communication with low latency uTofu interface in LQCD application, IPSJ SIGHPC

report, Vol.2020-HPC-177 No.22 (2020).

[2] Supercomputer “Flow Type I subsystem”, Nagoya Univerisyty. <https://icts.nagoya-u.ac.jp/ja/sc/>

Adjacent Communication
➢ it communicates with the front two processes and the back two processes.

➢ MPI_Isend/Irecv
• It is a communication method generally

used for adjacent communication of MPI.

• MPI_Isend / Irecv is two-way communication.

➢ RDMA
• RDMA communication can read and write data

without the intervention of the program of the

destination node by using a dedicated memory.

• RDMA is one-sided communication. Fig.3 Adjacent Communication

with 4 neighboring process case.

Fig.1 RDMA

➢ RDMA with Double Buffering
• It does not require synchronization by

using two buffers for communication.

➢ Communication setting

Fig.2 RDMA with Double Buffering:

When Buffer1 reception is not finish, Calculation

process cannot start. Therefore, communication

timing gap will less than 2.

Fig.6.1 Communication time of adjacent communication

when the number of adjacent communication

adjacent processes is changed.

Fig.5 Communication time of adjacent communication when the

total number of processes is changed by adjacent communication:

Experiment Condition

• The number of adjacent processes is 2

• Double precision data is 160.

The communication time does not change much when the total

number of processes is changed. This is because the amount of

communication per process does not change even if the total

number of processes is increased.

Fig.4 Vector image on processes

from rank0 to rank2

Fig.6.2 Communication time ratio when the MPI time is 1

when the number of adjacent processes is changed in

adjacent communication.

Data to be sent is stored

in a and b. Received data

is stored in c and d.

Process1

communicates

with process 7,

process 8, process

2, and process 3.

In RDMA

communication, it

is necessary to

synchronize so that

the data will not be

overwritten while

it is being used.

Experiment Condition

• The number of processes is 128.

• Double precision data is 160.

The communication time increases proportionally

when the number of adjacent processes is changed.

This is because changing the number of adjacent

processes increases the amount of communication

per process.

RDMA with double buffering was confirmed to

improve adjacent communication time by up to

30% compared to MPI.

In this experiment, we used a supercomputer Flow at Nagoya

University. It is equipped with a system called FX1000 [2].

➢ Fig.5 shows communication time when the total

number of processes is changed.

➢ Fig.6 shows communication time and improvement

rate when the number of adjacent processes is

changed.

