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ABSTRACT
This paper is concerned with two fundamental problems in invest-
ment science, namely a) the construction of a portfolio by segregat-
ing target assets into sectors representing a typical market index
and b) the selection of target assets from each of those sectors. Such
solutions may be applied, for example, to construct a portfolio of 50
assets (say) that aims to outperform the S&P 500 index by selecting
the most promising performer in each applicable sector or subsec-
tor. The formulation of this investment objective is non-trivial due
to the following reasons:
• For Problem 1, the cohorts of assets should be selected based
on not only a fundamental classification such as the Global
Industry Classification Standard (GICS)[5] but also appro-
priate statistical characteristics of the assets. The classic
argument is that Tesla should be classified as a Technology
firm instead of an Automotive manufacturer.
• For Problem 2, the selection of assets with each sector can be
driven by factors that may be non-uniform across different
sectors. The classic example here is that Inventory is usually
not important in the Software Technology sector but it is
considered important for the Industry Manufacturing sector.

A computationally efficient approach to solve a similar prob-
lem using Graph Theory has been described in Chapter 13 of Data
Analytics on Graphs[4], contributed by a co-author of this paper.
Problem 1 can be solved in the Graph Theory sense by cutting the
Set A of assets into two disjoint subsets to maximize the difference
in a certain performance metric f (x1,x2, . . . ,xn ) of one subset
{x1,x2, . . . ,xn }, where n < N , to the same metric applied to the
remaining subset ofN −n elements. This problem, known as finding
the “maximum graph cut” or Max-Cut, sounds intuitively straight-
forward for a small number of exemplar assets, but its complexity
can be prohibitive when applied to real-world, industrial-scale prob-
lems. To illustrate the complexity of the problem, if N = 500 (e.g.
the S&P 500 stock components), the number of combinations to
split the vertices into two subsets is C = 1.6 × 10150, and we have
to continuously subdivide the leaves in the tree of portfolio cuts to
arrive at a suitable sector partitioning that combines fundamental
classifications with asset statistical characteristics.
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Once we have arrived at the suitable sectors (currently there
are 11 sectors for the S&P 500 index, resulting in the average of 45
assets in each sector, but the computer may choose say 20 sectors
with 25 assets each on average), in theory, we can apply a similar
methodology to the factor sets to fit an asset selection model, so
that the model (usually via using a neural network) is only allowed
to choose one key factor from each subset of similar factors as
a workaround to the well-known problem of overfitting models
with too many similar factors, resulting in low ex-ante predictive
powers. Using Graph Theory to enhance neural networks is a tech-
nique known as Graph Neural Networks, which has successfully
addressed challenging missing data issues for cross-sectional and
panel-data models. However, if there are say 40 factors in a single
time slice, we will be working with an average of 1000 factors or
N = 1000 for a single cross-section in time, before even introducing
the time dimension to the problem, which may grow each factor
set to a few thousand factors.

Given the computational complexities shown above, these prob-
lems are not tractable within a meaningful timeframe using classical
computers. In a paper presented at the 2021 Annual Meeting of the
American Statistical Association[3], the authors have proposed an
alternative approach that would allow novel computational means
using the quantum computing variant of the Max-Cut algorithm.
Following the work done by quantum physicists at MIT[2], we pro-
pose to transform theMax-Cut problem that can be solved by “brute
force” combinatorial optimization into its equivalent representa-
tion using the Ising Hamiltonian function. Instead of millions of
CPU cycles to create a single vector of random samples, a quantum
computer is designed to generate a vector of simultaneous random
samples in a single cycle. This paper aims to describe the initial
results of a test implementation from solving this problem on:

• Classical computer as the base performance benchmark,
• Accelerated classical architectures, and
• IBM quantum computers and/or simulators[6].
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1 PROBLEM STATEMENTS
Problem 1.We aim to create an indicator vector, in which each asset
is represented as an element in the vector, 1 for present and 0 for not
present, that will yield a portfolio under a risk-return metric such as
the highest Sharpe ratio. It should be noted that portfolio objective
functionsmore complicated than the textbook Sharpe ratio are often
chosen in practice for managing institutional investment portfolios.
The first step in solving the problem, known as finding “portfolio
cuts”, sounds intuitively straightforward for a small number of
exemplar assets, but its complexity can be prohibitive when applied
to solve real-world, industrial-sized problems. Let’s assume that
A is the set of all admissible assets. Our goal is to find a subset
{x1,x2, . . . ,xn } of A such that:

• the weight attributed to each asset is great than or equal to
zero,
• all weights sum up to one, i.e.

∑n
i=1wi = 1

• the number of assets chosen is smaller than or equal to some
prescribed maximum n ≤ N , and
• while a given objective function f (w1,w2, . . . ,wn ) attains
its maximum within the feasible set.

Practically, this problem is typically solved by stepping wi on a
certain discrete grid with increments of (say) 0.5%, starting from
zero. This is computationally time-consuming and not tractable for
a large set of available assets to choose from. An alternative way to
think of the problem in a Graph Theory sense and essentially to
seek a solution in which the objective is maximized is to cut the
Set A into two disjoint subsets so that one subset {x1,x2, . . . ,xn }
can maximize the objective function f (w1,w2, . . . ,wn ). To illus-
trate the complexity of the problem, if N = 500 (e.g. the S&P 500
stock components), the number of explicit combinations to split
the vertices into two subsets is C = 1.6 × 10150, and that is the
complexity even before we allow the objective function to be fur-
ther maximized based on the chosen subset! However, contrary to
the computationally intensive approach sketched in the previous
paragraph, a computationally efficient approach to solve a similar
problem using Graph Theory has been described in Chapter 13 of
Data Analytics on Graphs[4].

Problem 2. Once we have identified the possible sectors, the returns
of each asset within the sectors can be driven by a set of factors such
as {r1, r2, . . . , rm }. Typically, each sector or sub-sector contains 20 to
30 assets while the factor set can easily exceed over 100 (say from the
accounting factors). Allowing all such factors to be used in any al-
pha selection model will result in the well-known problem of model
overfitting, as in one may find a model with good adjusted R2 but
with relative weak ex-ante predictive power. The classic solutions
are a) LEAPS regression to try all possible combinations of factors
or, b) certain “branch and bound” style heuristic to select a subset of
factors. The goal is to identify a small collection of dissimilar factors
to form a model showing good predictive power. However, these
are pure numerical methods. Using these methods, the computer
is not using the knowledge that say Dividends and Earnings Per
Share can be grouped together with the goal of picking only one
factor from this group. In fact, using similar factors in one model
may result in linear dependency among the factors which may
hurt the predictive powers of the resulting model. In other words,

the desirable approach is to choose at most one factors from each
subset {r1, . . . , rm1 }, {rm1+1, . . . , rm2 }, {rm3+1, . . . , rm4 }, · · · where
mi ≤ m. In one sentence, the problem is about cutting the set
{r1, r2, . . . , rm } into the appopriate subsets based on both the fun-
damental grouping information of the factors, along with other
statistical characteristics such as the historical correlation coeffi-
cients observed among the factors.

2 SOLUTION TO PROBLEM 1 - PORTFOLIO
GRAPH CUTS

In this section, we use n = 1000 from the universe of Russells
1000 components with daily closing prices from the beginning of
January 2018 to the end of May 2021. If we invest in the entire
universe of roughly 1000 stocks scaled by market capitalization, by
definition there will be no out-performance, which is uninteresting
to investors. For each portfolio cut, we try to produce a subset with
similar characteristics, relative to traditional Global Industry Clas-
sification Standard[5] (or “GICS”), which are often chosen based on
fundamental criteria (e.g. Tesla is classified as automotive although
some may argue that its asset prices behave more like a technology
stock).

The alternative idea is to invest in the best-performing stock(s) in
each portfolio cut so that we create out-performance relative to the
underlying index while preserving index diversification benefits to
some extent. Next, we describe the precise algorithm required. We
use the notation of an n-node undirected graph G = (V ,E) where
|V | = n with edge weightswi j > 0,wi j = w ji for (i, j ) ∈ E, which
is defined as the absolute correlation coefficient, |ρi j |, or

wi j =
|σi j |
√
σiiσj j

= |ρi j |

where σi j = cov (ri (t ), r j (t )) is the covariance of returns between
assets i and j. The degree matrix, D ∈ RN×N , is a diagonal matrix

with its elements defined as Dmm =
N∑
n=1

wmn . Then, the N × N

graph Laplacian matrix, L ∈ RN×N , defined as L = D-W, serves
as an operator for evaluating the curvature, or smoothness, of
the graph topology. Now we group the n-vertex market graph,
G = {V ,E}, into K = 2 disjoint subsets of vertices, V1 ⊂ V and
V2 ⊂ V , with V1 ∪V2 = V and V1 ∩V2 = ∅. A cut of this graph, for
the given clusters, V1 and V2, is equal to a sum of all weights that
correspond to the edges which connect the vertices between the
subsets, V1 and V2, i.e,

Cut (V1,V2) =
∑
m∈V1

∑
n∈V2

wnm .

The normalized cut is regularized by an additional term to enforce
that the subsets V1 and V2 should be simultaneously as large as
possible:

CutN (V1,V2) =
( 1
N1
+

1
N2

) ∑
m∈V1

∑
n∈V2

wnm

Further, it can be shown that if an indicator vector is defined as
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x (n) =



1
N1
, for n ∈ V1

− 1
N2
, for n ∈ V2

then the normalized cut, i.e. CutN (V1,V2), can be found by the
Rayleigh quotient of L and x, i.e.

CutN (V1,V2) =
xT Lx
xT x

.

The indicator vector, x, which minimizes the normalized cut also
minimizesCutN (V1,V2). We rewrite this minimization problem, for
the unit-norm form of the indicator vector, as

minx xT Lx, s .t . xT x = 1
which can be solved through the eigenanalysis of L, i.e. Lx = λkx.
After neglecting the trivial solution x = u1, (k = 1), since it pro-
duces a constant eigenvector, we next arrive at x = u2, (k = 2).
Thus, the membership of a vertex, n, to either the subsetV1 orV2 is
uniquely defined by the sign of the indicator vector x = u2, i.e.

sign(x(n))=



1, for n ∈ V1
−1, for n ∈ V2

Notice that scaling of x by any constant would not impact the clus-
tering of elements of x into subsets ofV1 orV2. It is straightforward
to generalize to K ≥ 2 disjoint sub-graphs through the method of
repeated bisections. For instance, K = 4 portfolio cuts generate
24 = 16 leaves of the market graph, with each statistically-derived
sector averaging 62.5 assets for n = 1000. Since the size of each
portfolio cut is not evenly distributed, we will target the maximally
acceptable size of a proper portfolio cut to be 125, or twice the
number of average assets in each cut. This heuristic criterion will
turn out to be quite helpful in subsequent discussions.

2.1 Mixing GICS and Absolute Correlation in
Graph Laplacian Matrix

An alternative definition of edge weight vi j is given by

vi j =



1, if assets i and j are in the same GICS sector
0, if assets i and j are in different GICS sectors.

GICS[5] is an industry-standard taxonmy used to describe asset
sectors such as:

No GICS Classification Sector
1 10 Energy
2 15 Materials
3 20 Industrials
4 25 Consumer Discretionary
5 30 Consumer Staples
6 35 Health Care
7 40 Financials
8 45 Information Technology
9 50 Communication Services
10 55 Utilities
11 60 Real Estate

Table 1: GICS Sector Names.

Next, we use this linear combination of vi j andwi j , i.e. κ ×vi j +
(1 − κ) × wi j , to construct the N × N graph Laplacian matrix L.
When κ = 1, the graph Laplacian contains only the GICS sector
information of the assets, so the portfolio graph cuts can only return
the partitioning by sectors. When κ = 0.9, the graph Laplacian is
still dominated by the GICS sector information of the assets, but
the graph cuts are beginning to be influenced by how certain assets
may strongly correlate with each other, as shown in how “financials”
are split into two cuts in Figure 1.

Figure 1: Sector information with portfolio cuts generated
with κ = 0.9.
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Figure 2: Rainbow-colored return/volatility plot with port-
folio cuts generated with κ = 0.9.

When κ = 0.3, the graph Laplacian is now driven by both the
GICS information and absolute correlation among the assets as
shown in Figure 2. Now we can see that the portfolio cuts may
allow a mix of sectors with mostly “new economy” stocks mixed
with a handful of “old economy” stocks, as shown in Figure 5.
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Figure 3: Sector information with sample portfolio cuts gen-
erated with κ = 0.3.
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Figure 4: Rainbow-colored return/volatility plot with sam-
ple portfolio cuts generated with κ = 0.3.

2.2 Criteria for Intuitive Portfolio Cuts
Since GICS sector information carries only 30% of the edge weights,
for the remaining 70%, we can mix in as much information as desir-
able when defining the edge weights, such as certain correlation
measures of financial information reported by the candidate com-
panies. The practical issue is whether the results generated will be
reasonably intuitive, which may include the following criteria:

(1) The largest portfolio cuts should be no more than 125 assets;
(2) Either no “orphan” cuts (cuts with only one or two assets) or

effective ways to eliminate them by recombining leaves; and
(3) “Intelligence” to group companies such as Tesla with the

technology universe based on asset price statistical charac-
terisitics.

Figure 5: Membership in portfolio cut generated withκ = 0.3
in Figures 3 and 4.

For a universe of 1000 assets, the eigenvectors associated with the
smallest 50 or so non-zero eigenvalues are reasonably smooth (let’s
call the Set S), we can ask the computer to choose a subset of S
to do the cuts so that we keep progress on the leaves until the
largest cut contains no more than 125 assets. Empirical experience
suggests that we can do so with 17 eigenvectors chosen from a
set S of 34 eigenvectors. We have also eliminated one out of any
two neighboring eigenvectors with less than 10 variations in signs,
which will almost surely result in a trivial if not an identical cut.
Choosing 17 eigenvectors out of a set of 34, i.e.

(34
17
)
, can result

in over 2 billion total combinations. The goal is to sample only a
few hundred combinations so that the computer will satisfy the
criteria as stated above while generating cuts that reflect either
sector characteristics or asset price correlations, but ideally both.
That was the case in one trial in which the largest portfolio cut
contains 116 assets selected from a small mix of sectors (“indus-
trials”, “consumer discretionary” and “technology”), as shown in
Figure 6, and the second-largest portfolio cut contains 72 assets
from the “new economy” technology stocks including Facebook
and Alphabet, as shown in Figure 7.

Interestingly enough, the largest portfolio cut also contains the
ride-sharing company Lyft which is widely thought of as a tech-
nology company, which should be grouped with the second-largest
portfolio cut. If we run (say) 2000 samples (or 0.0001% of the 2
billion combinations), we may get more effective portfolio cuts, but
doing so requires generating much larger sampling sets. Generating
correlated random vectors is complicated on a classical computer
but almost trivial on a quantum computer. Do note that any com-
plicated matrix computations are already completed at the point of
the random sampling, so the remaining steps are about “scoring”
the cuts, which are all simple arithmetics with linear complexity. In
addition, only the eigenvector information needs to be sent to the
random sampling engine at that point. The next section will discuss
how we can achieve “quantum leaps” in computational efficiency
by solving what would have been a time-consuming computational
problem using classical computers.
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Figure 6: Largest portfolio cut for sample portfolio cuts gen-
erated with κ = 0.3.

Figure 7: Second-largest portfolio for sample portfolio cuts
generated with κ = 0.3.

3 QUANTUMIZED VARIANT TO THE
ALGOIRTHM

Based on the algorithm described above, we use n = 1000 and target
16 cuts. Each sector has 62.5 assets on average. Assuming that we
have a reasonably robust model for finding asset alpha, we limit the
problem to picking 3 assets from (say) the top 5 identified in each cut.
Then, the total number of portfolio combinations to check will be(5
3
)16
= 1016, which is still a very large number, but is a significant

reduction in the order of magnitude from the initial combinations
of 1.6 × 10150 as stated in the very beginning of this paper. Thus,
we have aggressively reduced the dimensionality of the problem by
controlling the number of desirable assets allowed in each portfolio
cut. In each of the target cuts, we choose only 3 assets from the top
5 assets screened out by the alpha model to create a portfolio of
roughly 48 stocks, which is a portfolio containing the number of
assets that is consistent with industry practice. Such a problem is
at least computationally tractable using modern computers.

This problem bears resemblance to the more generalized Maxcut
and MaxCut-SAT problems. Their solutions have quantum analogs
(e.g. “Quantum Approximate Optimization Algorithm QAOA” by
Farhi, Goldstone, and Gutmann[2]). Essentially, a quantum com-
puter can produce a simultaneous random vector far more effi-
ciently than a classical computer can without the typical time-
consuming matrix inversion step to compute Cholesky decomposi-
tions to generate correlated random vectors, so we use the quan-
tumized random vector as the tool for performing an extremely
fast random sampling. The key to practical application is to find
reliable bounds for convergence. Specifically, the authors are keen
to explore whether bounds derived for classical combinatoric op-
timization problems can be applied to their quantum equivalent
solutions[1].

To give a more specific example, MaxCut is an NP-complete
problem with the following characateristics. The problem is a 1000-
node undirected graphG = (V ,E) where |V | = n with edge weights
wi j > 0,wi j = w ji for (i, j ) ∈ E, The ultimate goal is to find
partitions of the original setV into n subsets, namelyV1,V2, . . .,Vn ,
where each subset contains fewer than the maximally allowed 125
assets. As mentioned earlier, this is done by applying the method
of repeated bisections until the leave of each cut in a market graph
reaches the desired size. The cost function to be miminized in each
cut is the sum of weights of edge-connected points in the two
different subsets (crossing the cut). Assign xi = 0 or xi = 1 to each
node i to maximize the global objective function

Ĉ (x ) = −
∑
i, j

wi jxi (1 − x j ),

or more generally as

C (x ) = −
∑
i, j

wi jxi (1 − x j ) −
∑
i
wixi

to incorporate both quadratic and linear terms in the objective
function C . To map this algorithm to a quantum circuit, map the
objective to an Ising Hamiltonian: xi → (1 −Zi )/2, where Zi is the
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Figure 8: Typical Choice of Factors.

Pauli Z operator with eigenvalues ±1:

C (Z ) = −
∑
i, j

wi j

4
(1 − Zi ) (1 + Zi ) −

∑
i

wi
2
(1 − Zi ),

which can be rewritten as:

C (Z ) =
1
2
(
∑
i<j

wi jZiZ j +
∑
i
wiZi ) + const .

Thus, the weighted MaxCut problem is equivalent to minimizing
the following Ising Hamiltonian:

H = −
∑
i
wiZi −

∑
i<j

wi jZiZ j

A solution solving for this functional form has been implemented by
the IBM Qiskit optimization module which can generate the Ising
Hamiltonian for the objective function C[6]. The computation as
described in Section 2 has taken hours if not days when performed
on a state-of-the-art 8-core computer with RISC architecture. The
goal of our future research is to reduce the graph cut computation to
minutes if not seconds by using a quantum computer on the cloud
so that prospective users at financial institutions can visualize the
new portfolio cuts almost instantly in each rebalancing cycle.

3.1 Empirical Results
[TO BE INCLUDED]

4 SOLUTION TO PROBLEM 2 - ESTIMATING
EXPECTED RETURNS

A further application of Graph Theory is to derive time-series
estimates of expected returns for each of the assets in SetA as inputs
to the portfolio optimization algorithm. This is typically done as
either a cross-sectional regression or a panel regression, but the
pre-condition is that an effective set of factors must be chosen from
customary financial and market data available on each asset first.
A typical user interface to choose such data (as extracted from the
HedgeSPA Institutional Investment Platform) was presented in the
2018 Annual Meeting of the American Statistical Association[3], as
shown in Figure 8.
We “cut” the set of factors {r1, r2, . . . , rm } into different subsets
{r1, . . . , rm1 }, {rm1+1, . . . , rm2 }, {rm3+1, . . . , rm4 }, · · · where mi ≤

m. We also use a linear combination of vi j and wi j , i.e. κ × vi j +
(1−κ) ×wi j , to construct the N ×N graph Laplacian matrix L. The

Figure 9: Neural Network.

edge weight vi j is given by

vi j =



1, if factors i and j are in the same fundamental category
0, if factors i and j are in different fundamental category.

andwi j is the absolute correlation coefficient between factors i and
j. κ will be a parameter chosen based empirical experience.

Once the facors are segregated into different cuts, we choose
one factor from each cut to fit a linear model or a more advanced
neural net, as shown in Figure 9. Formally, from the set Bi of all
ni +mi factors related to asset i , we want to choose a subset of
ni factors that is most effective in explaining asset returns. The
total available combinations will be

∑ni+mi
k=1

(ni+mi
k

)
. This is still

a very large number of combinations even for day-to-day factor
sets constructed from typically available accounting and economic
data. For instance, the computer will have to check 1.1 × 1015
combinations for a set of 50 factors and 1.3 × 1030 combinations
for a factor set of 100. The success of the alternative method as
proposed above will depend on:
• Ability to generate a large number of graph cuts as trials
without performing explicit sampling; and
• Ability to reject a potentially unhelpful graph cut as quickly
as feasible.

4.1 Empirical Results for Classical and
Quantum Computing

[TO BE INCLUDED]

5 ROLE OF QUANTUM COMPUTING
Real-world financial constraints are expected to be far more com-
plex than those with idealized constraints in the basic MaxCut-SAT
published by Farhi, Goldstone, and Gutmann. We are modifying
MaxCut (as implemented on Qiskit by the IBM Quantum Lab) to
solve the problems of interest under constraints. Using a quantum
computer would greatly increase the speed of the algorithm de-
scribed in earlier sections in this paper. Firstly, the intensive use
of a random number generator in the first step of our algorithm is
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extremely cumbersome on a classical computer. With a quantum
computer, this can be generated in one single cycle. A quantum cir-
cuit can generate a vector of correlated random numbers based on
the quantum entanglement property in one cycle, as compared to
the millions of cycles required on a classical computer to compute
correlated quasi-random numbers based on Cholesky decomposi-
tions. In addition to speeding up the initial random number gen-
erator, using a quantum computer will help find faster samples of
portfolio combinations in the second stage of the algorithm, which
will also help eliminate excess steps required to reach an optimal
within practical precision bounds.

There is strong objective evidence why this line of research
holds major promises. We have been able to produce superior time-
series estimates that have resulted in significant investment out-
performance not seen in the past. The performance graph to follow
is one example of applying our methodology to create an enhanced
alternative to the KOSPI 200 Index (the main equity market index
in South Korea) for a leading global institutional asset manager to
achieve almost double-digit out-performance per year without any
use of leverage. Please note that this is an independently verifiable
out-performance track record created based on professional per-
formance reporting standards, not a backtesting of a hypothetical
portfolio:

For comparison, the following describes the massive scale required
to perform the rebalancing computation for the Enhanced Korean
Index if we sample exhaustive combinations on classical computers.
Let’s say that our goal is to select 25 stocks out of the 200 compo-
nents in the KOPSI 200 Index, roughly representing 20 sectors in
total, or:
• Number of Portfolio Cuts =

(200
25
)
= 2.5 × 1031

• Number of Asset Selection Trials for 20 Sectors = 20×
∑100
k=1

(100
k

)
=

4.5 × 1031
• Total Combinations by Exhaustive Sampling = 7.1 × 1031

6 CONCLUSIONS AND FUTURE RESEARCH
To conclude, the problems as discussed in this paper cannot be
solved effectively in the real world on a meaningful scale for in-
dustrial applications without using advanced hardware such as
supercomputers and quantum computers as well as a smart algo-
rithm such as Graph Theory to reduce the dimensionality to that of
a tractable problem. This paper presents our initial efforts in such
research, and the authors hope that the results coupled with the
new perspective on wider and more pragmatic portfolio selection
will inspire similar R&D efforts by publicizing this work.
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