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1 INTRODUCTION
In this research, we consider solving sparse linear systems of equa-
tions: Ax = b, where A(∈ R𝑛×𝑛) is a symmetric and positive
definite matrix. In the last few years, GPUs have been utilized to
efficiently solve a linear system of equations by means of precon-
ditioned Krylov subspace methods. To maximize the potential of
GPUs for massive data processing, the preconditioner is desired to
have a high degree of parallelism. Whereas incomplete factoriza-
tion preconditioners involve forward/backward substitutions that
are not preferable for implementation on GPUs, sparse approxi-
mate inverse (SAI) preconditioners are suited for GPUs because
their preconditioning operations are performed by sparse matrix-
vector multiplications. However, SAI algorithms tend to take more
time than incomplete factorization to construct the preconditioners.
Therefore, it is desirable to speed up the preconditioner construc-
tion part of the SAI preconditioners.

In this research, we focus on the approximate inverse (AINV)
preconditioner [1]. Simplifying some procedures of the AINV algo-
rithm, we propose a new AINV variant, named PS-AINV. Thanks to
the simplification, it is expected that the PS-AINV algorithm con-
structs the preconditioner faster than the standard AINV algorithm.

2 POSITION-BASED SIMPLIFIED AINV
The standard AINV algorithm is performed as in Algorithm 1, based
on incomplete conjugation (A-orthogonalization) of the standard
basis. By adding some dropping techniques to A-orthogonalization,
the sparse approximate inverse of the form A−1 ≈ ZD−1Z𝑇 is
obtained, where Z = [z1, . . . , z𝑛] and D = diag(𝑑1, . . . , 𝑑𝑛).

Algorithm 1 The AINV algorithm

1: for 𝑖 = 1, · · · , 𝑛 do
2: z𝑖 = e𝑖
3: for 𝑗 = 1, · · · , 𝑖 − 1 do
4: 𝑝 𝑗 = a𝑇

𝑖
z𝑗

5: z𝑖 = z𝑖 −
𝑝 𝑗

𝑑 𝑗
z𝑗

6: Drop some elements from z𝑖 .
7: end for
8: 𝑑 𝑗 = a𝑇

𝑖
z𝑗

9: end for

In the AINV algorithm, 𝑝 𝑗 is frequently equal to 0, because both
a𝑖 and z𝑗 are sparse vectors. To exploit this property, it is advisable
to calculate the inner product only if there is a possibility that
𝑝 𝑗 ≠ 0. However, judging whether 𝑝 𝑗 can be nonzero also takes
non-negligible time. To reduce this additional execution time, we
propose a new method, which is named Position-based Simplified
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Figure 1: Computational time comparison between SP-AINV
and AINV. The results for the preconditioner construction,
“Const.,” and the combined results for the preconditioner
construction and the CG computation, “Const. + CG” are
shown.

AINV (PS-AINV). In the PS-AINV algorithm, the judging process
is simplified based on the positions of the nonzero elements of A.
Specifically, we modify the AINV algorithm so that 𝑝 𝑗 is calculated
only if the (𝑖, 𝑗 )th element of A, 𝑎 𝑗𝑖 , is not equal to 0. The modified
algorithm is given by replacing the third line of Algorithm 1 with
“for 𝑗 = 1, · · · , 𝑖 − 1 && 𝑎 𝑗𝑖 ≠ 0 do.”

3 NUMERICAL TESTS
We conducted numerical tests using a computational node that
is equipped with Intel Xeon Gold 6230 CPUs and NVIDIA Tesla
V100 GPUs. We selected eight datasets from the SuiteSparse Matrix
Collection [2] for the test problems. In the tests, we examined
the performance of CG solvers preconditioned by AINV and PS-
AINV. The preconditioner construction part ran on a CPU, and the
iterations of the CG solvers were executed on a GPU.

Figure 1 compares the execution time for PS-AINV with that
for AINV for all test cases. This comparison shows that PS-AINV
reduced the execution time taken for the preconditioner construc-
tion to at least 1/2 for all test matrices. Furthermore, for the three
test matrices: Queem_4147, dielFilterV2real, and ldoor, PS-AINV
reduced that time to less than 1/4. As a result of this reduction,
PS-AINV also shortened the total execution time taken for the
preconditioner construction and the CG computation.
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