
A simplified AINV method
based on nonzero element positions

of a coefficient matrix

2022/01/12

HPC Asia 2022

Kengo Suzuki1)，Takeshi Fukaya1)，Takeshi Iwashita1)

1) Hokkaido University

1. Background

2. Outline

3. AINV algorithm

4. Proposed algorithm : PS-AINV
algorithm

5. Numerical results

6. Conclusions

2

Table of contents

Problem
Linear systems of equations: ,
where, is sparse, symmetric, and positive definite.

Solving method
Preconditioned conjugate gradient (PCG) method

In recent years…
• Graphic processing units (GPUs) have been used to efficiently

execute the PCG method.
• To exploit the GPUs’ potential for massive data processing, the

preconditioning method is desired to have highly parallelism.
• Many preconditioning methods that utilize the GPUs have been

proposed.
For example,
- IC preconditioning with the AMC ordering method,
- IC preconditioning with Jacobi method, and
- Sparse approximate inverse preconditioning.

Ax = b
A ∈ ℝn×n

1. Background (1/2)

3

Preliminary tests
• We compared three preconditioning methods that are suitable for

GPUs:
- IC preconditioning with AMC ordering
- IC preconditioning whose forward/backward substitutions are approximately

performed by Jacobi method
- Approximate inverse (AINV) preconditioning [1]

• We implement all the PCG solvers so that each preconditioner is
constructed on a CPU and each PCG method is executed on a GPU.

Brief results
• The AINV preconditioned solver is (almost) the best of the three

solvers in terms of execution time for the PCG method (on a GPU).
• However, AINV preconditioning takes more time to construct its

preconditioner (on a CPU) than the other two preconditioning
methods do.

• Similar results are shown in [3].

1. Background (2/2)

4

Purpose of this study
• To make AINV preconditioning more attractive.

- Once the AINV preconditioner is constructed, the AINV preconditioned CG
solver runs sufficiently fast on GPUs.

- However, a part of constructing the AINV preconditioner (AINV algorithm)
relatively takes a long time and is needed to be improved.

Methods
• We propose a new version of the AINV algorithm.

- We introduce a simplification that is based on nonzero positions of to the AINV
algorithm.

- The simplification will reduce the computational complexity, computational
time, and memory usage of the AINV algorithm.

• We evaluate the performance of the proposed algorithm.
- How much faster will the AINV algorithm be?
- How much will the performance of the PCG method change?
- What about the performance of the whole solver?

A

2. Outline

5

AINV algorithm
An algorithm to (approximately)
calculate and that satisfy the
following equation : .

Dropping method
• Dropping method is…

- A kind of approximation.
- Used to create a sparsity of .
- Usually based on the magnitudes of elements

of [1, 2].

• In this study
- We use a dropping method in which the

elements of whose magnitudes are less than
a predefined threshold are removed.

- We set the threshold to

Z D
A−1 ≈ ZD−1ZT

zj

zj

zj

0.1

3. AINV algorithm (1/2)

6

1 : for i = 1,…, n do
2 : zi = ei

3 : for j = 1,…, i − 1 do
4 : pj = aT

i zj

5 : zi = zi −
pj

dj
zj

6 : Drop some elements
from zi .

7 : end for
8 : dj = aT

i zj

9 : end for

The AINV algorithm

Implementation
• To efficiently execute…

- We should store the column vectors and in
a compressed format.

- If , we should omit the calculation of
lines 4-6 for corresponding .

• Thus, we should consider line 3 as
“ .”

How to judge whether
• Scan the vectors of in row-major order

as shown in the figure to the right.
• In order to do that, we have to…

- Use additional arrays that store the row vectors
of to scan in row-major order.

- Update these row vectors, not only the column
vectors.

- Avoid finding duplicate during the scanning.

• These operations take a long time.

a z

pj = 0
j

for j = 1,…, i − 1 ∧ pj ≠ 0 do

pj ≠ 0
Z

Z

zj

3. AINV algorithm (2/2)

7

1 : for i = 1,…, n do
2 : zi = ei

3 : for j = 1,…, i − 1 do
4 : pj = aT

i zj

5 : zi = zi −
pj

dj
zj

6 : Drop some elements
from zi .

7 : end for
8 : dj = aT

i zj

9 : end for

The AINV algorithm

z3 z4z3

z4

a5z2 z3 z4z1
z1

z2

Duplicate vectors

Position-based Simplified AINV
algorithm : PS-AINV algorithm
• In the PS-AINV algorithm…

- is judged instead of .
‣ If , is unlikely to be because the initial value

of is (and the diagonal elements of are nonzero).
‣ Conversely, If , is approximated by .

- The algorithm runs as shown to the right.
• The following two illustrations show the

judging procedures in the AINV
algorithm and the PS-AINV algorithm.

aji ≠ 0 pj ≠ 0
aji ≠ 0 pj 0
zj ej A

aji = 0 pj 0

4. Proposed algorithm (1/2)

8

1 : for i = 1,…, n do
2 : zi = ei

3 : for j = 1,…, i − 1
∧ aji ≠ 0 do

4 : pj = aT
i zj

5 : zi = zi −
pj

dj
zj

6 : Drop some elements
from zi .

7 : end for
8 : dj = aT

i zj

9 : end for

∧ pj ≠ 0

The PS-AINV algorithm

a5z2 z3 z4
z3 z4z3

z4

z1
z1

z2

a5z2 z3 z4

z4

z1
z1z2

The procedure
in the PS-AINV algorithm

The procedure
in the AINV algorithm Only scanning is needed.

Additional arrays and
operations are NOT needed.

ai

Influence on the performance
• Thanks to the simplification, the PS-AINV algorithm is expected to

run faster than the standard AINV algorithm.
- Let = (The time taken for AINV) (The time taken for PS-AINV).

• However, the performance of the PS-AINV-PCG method might not
be better than that of the AINV-PCG method.
- This is because the PS-AINV preconditioner is likely to be a more rough

approximation of because of the simplification.
- Let = (The time taken for PS-AINV-PCG)

 (The time taken for AINV-PCG).

Therefore,

ΔTPre −

A−1

ΔTPCG
−

4. Proposed algorithm (2/2)

9

AINV algorithm

PCG method

Execution on a CPU

Execution on a GPU

Flowchart of the AINV-PCG solver

Data transfer

When , the performance of the
whole solver, which is the sum of the
preconditioner construction and the PCG
iterations, is increased.

ΔTPre > ΔTCG

This part will become faster.

This part might become slower.

Conditions of the tests
We…

- Used a computer equipped with CPUs and GPUs.
‣CPUs : Intel Xeon Gold 6230 (Cascade Lake) x2
‣GPUs : NVIDIA Tesla V100 x4

- Executed the AINV algorithm and PS-AINV algorithm on a CPU.
- Executed the PCG method on a GPU.
- Set the convergence criterion as
- Used a diagonally shifted matrix only in

each preconditioner construction algorithm to prevent breakdown.

Data sets

∥b − Ax∥2/∥b∥2 < 10−8

A′ = {a′ ij = aij (i ≠ j), a′ ij = αaij (i = j)}

5. Numerical results (1/3)

10

Name Dimension # nonzero
(nnz)

nnz / row Field of problems α
Bump_2911 2,911,419 127,729,899 43.87 2D/3D Problem 1.2
CurlCurl_4 2,380,515 26,515,867 11.14 Model Reduction 1.2
G3_circuit 1,585,478 7,660,826 4.83 Circuit Simulation 1.0

Queen_4147 4,147,110 316,548,962 76.33 2D/3D Problem 1.3
Serena 1,391,349 64,131,971 46.09 Structural Problem 1.2

dielFilterV2real 943,695 77,651,847 82.28 Structural Problem 1.2
ldoor 952,203 42,493,817 44.62 Structural Problem 1.3

thermal2 1,228,045 8,580,313 6.99 Thermal Problem 1.0

Comparisons with respect to the performance
of the PCG method

5. Numerical results (2/3)

11

0 1000 2000 3000 4000
Number of iterations

10°8

10°6

10°4

10°2

100

102

R
el

at
iv

e
re

si
du

al

AINV-PCG
PS-AINV-PCG

Result for the ldoor dataset

0 250 500 750 1000 1250 1500
Number of iterations

10°8

10°6

10°4

10°2

100

102

R
el

at
iv

e
re

si
du

al

AINV-PCG
PS-AINV-PCG

Result for the CurlCurl_4 dataset

Bump 2911

CurlC
url 4

G3 circ
uit

Queen
4147

Sere
na

dielF
ilte

rV2rea
l
ldoor

therm
al2

0.90

0.95

1.00

1.05

1.10

Sp
ee

du
p

co
m

pa
re

d
w

ith
A

IN
V

Exection time # of iterations

• These figures show how much the
simplification influences the PCG method.

• The execution time and number of iterations
are almost the same between AINV-PCG and
PS-AINV-PCG.

• Even in the worst case, PS-AINV-PCG is only
about 5% worse than AINV-PCG in terms of
the execution time.

The convergence properties
are almost the same

The convergence
properties are almost

the same

Comparisons with respect to the execution time of
the construction algorithms and the whole solvers

5. Numerical results (3/3)

12

Const : Comparison between the AINV
algorithm and the PS-AINV algorithm

Const.+CG : Comparison between the AINV-PCG
solver and the PS-AINV-PCG solver

Bump 2911

CurlC
url 4

G3 circ
uit

Queen
4147

Sere
na

dielF
ilte

rV2rea
l

ldoor

therm
al2

1

2

3

4

Sp
ee

du
p

co
m

pa
re

d
w

ith
A

IN
V

Const.
Const. + CG

• This figure shows how much fast the PS-AINV algorithm and the PS-AINV
preconditioned CG solver are, compared with the AINV algorithm and the AINV
preconditioned CG solver, respectively.

• The PS-AINV algorithm runs faster than the standard AINV algorithm for all the
test datasets.

• The PS-AINV-PCG solver also achieved superior performance compared with the
AINV-PCG solver because, as we mentioned on the previous page, the effect of
the PS-AINV preconditioner on the CG method is almost the same as that of the
AINV preconditioner.

We proposed a PS-AINV algorithm.
• The PS-AINV algorithm…

- Is derived by simplifying the AINV algorithm based on nonzero positions of .
- Is expected to run faster than the AINV algorithm because of the simplification.

• However, the PS-AINV preconditioner might be poor performance compared
with the AINV preconditioner.

• When the reduced time in the preconditioner construction part is greater than the
increased time in the PCG execution part, the performance of the overall solver
will increase.

Numerical results show that…
• The PS-AINV algorithm runs faster than the AINV algorithm for all the test

datasets.
• The performance of the PCG execution part is almost the same between AINV

preconditioning and PS-AINV preconditioning.
• The overall solver performance also increases for all the test datasets.

Future works
• We will extend this method to asymmetric version of the AINV algorithm and

evaluate its performance.
• We will apply other dropping methods to the PS-AINV algorithm.

A

6. Conclusions

13

[1] M. Benzi and C.D. Meyer and M. Tůma. “A sparse approximate inverse
preconditioner for the conjugate gradient method.”, SIAM J. Sci. Comput 17
(1996): 1135–1149.

[2] S. Fujino and Y. Ikeda, "An improvement of SAINV and RIF preconditionings
of CG method by double dropping strategy," Seventh International
Conference on High Performance Computing and Grid in Asia Pacific Region
(2004): 142–149.

[3] M. Benzi and M. Tůma. “A comparative study of sparse approximate inverse
preconditioners”, Applied Numerical Mathematics 30 (1999): 305–340.

6. References

14

Thank you!

