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Single	socket	SuperMUC-NG	@2.3	GHz,	non-temporal	stores,	
bi-dir,	1024	B,	close	chain,	distance-1	communication

Possible	de-sync	scenarios
1. Multi-phase	applications
2. Spatial	multitasking	in	GPUs
3. Task-parallel	programs
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128x64x64	size,	6.7	GB	data	set,	non-
blocking	MPI	routines,	16	Emmy	sockets

Chebychev Filter	Diagonalization
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processes

𝑇!"#$ 𝑇!"## 𝑇!"#$ 𝑇!"##

m$

m%

m&

m'

𝜃'

V'&

V&%

V%(

direct-neighbour	
communication

Variability
is	not	all	

detrimental

De-sync
of	processes

causes	automatic	
communication	overlap	
and	bottleneck	evasion

Slower
idle	waves,

strong	bottleneck
and	variability	help	in	
amplifying	the	de-sync

Across	context,
if	de-sync	is

desirable,	apply	
optimization	techniques
amplifying	the	de-sync

Idle	waves	can	propagate	or	
distort	according	to	variability	
caused	by	collective	algorithm
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Fig. 8. ChebFD application for the topological insulator matrix Topi-128-64-64
(static OpenMP scheduling, AVX vectorized and aligned execution, niter = 5) running
on (single leaf switch connected) homogeneous Emmy nodes. (a) Performance scaling
with OpenMP on a contention domain for nb = 2 and nb = 32, (b) scaling up to 10
nodes for nb = 2 and nb = 32, and different numbers of threads per process, (c) time-
line for a specific number of iterations of pure MPI vs. full hybrid execution for nb = 2
and 8 Emmy nodes.

and a polynomial filter degree np = 500, which are realistic values. The optimistic
code balance assuming perfect cache reuse on the block vectors is [12]

Bc =
260/nb + 80

146
byte
flop

, (3)

which is well beyond the machine balance of all current CPUs even for large
nb, rendering the code memory bound according to a naive Roofline model. In
reality, the nb = 32 case is already close to core bound since intra-cache data
transfers begin to limit the performance of the code on some platforms, such as
Emmy [13]: Fig. 8a shows performance vs. cores per socket for nb = 2 and nb = 32,
and indeed the latter cannot fully saturate the bandwidth and achieves only
41Gflop/s out of the bandwidth-bound Roofline limit of 66Gflop/s. Figure 8b
shows strong scaling from 2–10 nodes for both cases with 2 (10 threads each) to
20 (single-threaded) MPI processes on each Emmy node. At nb = 2, fewer threads
have a clear advantage while the situation is reversed at nb = 32. The more
saturating code (nb = 2) has ample opportunity for desynchronization without
threading (which is shown in the timeline comparison in Fig. 8c). In Fig. 8c,
the upper panel shows MPI only while the lower panel shows hybrid with 10
threads (1 process) per socket, both on eight Emmy nodes. The more scalable
code (nb = 32) shows no spontaneous desynchronization without threading, and
the fully hybrid code can benefit from the reduced number of MPI messages.

7 Related Work

There is very little research on idle wave propagation and pattern formation
in parallel code, especially in the context of memory-bound programs. Hence,
none of the existing prior work addressed spontaneous pattern formation and
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Fig. 2: Measured LBM irregular structure in comparison with expected model regularity. The plot shows that the time steps
with more irregularity (iterations in between and at the end of the results) manifest maximum percentage variation towards
better performance (2.25% at time step t = 500 and 2.42% at time step t = 10000).

LBM time steps t, from t = 1 to t = 10,000, where the location
of the time step along the wall-clock time axis is marked on
each process (red markers). For reference, we also show the
expected positions according to the simple nonoverlapping
execution-communication model (1). While the deviation from
the model and the variation across processes is still small
after 20 time steps (< 0.1s), a global structure has emerged
at t = 500 with a fundamental “wavelength” equal to the size
of the system (100 processes) and an amplitude of 0.3 wall-
clock seconds. This pattern is not static but shifts and changes
shape, as can be seen at t = 5,000 and t = 10,000. Moreover,
the actual runtime at t = 10,000 is about 28 s smaller than
expected. While this is only a deviation of about 2.5%, the
pattern is interesting and may show up more prominently with
applications that have different communication overheads and
patterns.

The examples above have demonstrated that some scenarios
allow noise to act as an application accelerator as well as a
slowdown factor. There is, however, a very complex interplay
between application code execution, the message passing
library, and the network, which leads to a rich spectrum of
local and collective phenomena in parallel code, especially
when noise is present. The accelerating effect is certainly not
guaranteed. In this work we want to study a particular aspect
of this theme: the wave-like propagation of execution delays
(“idle waves”) [11] through the network under the influence
of system noise and variable injected noise.

C. Contributions

The major contribution of this paper is the investigation of
idle waves, which are phases of inactivity in a parallel program
that propagate across processes. They emanate from strong
delays occurring on individual processes of an MPI-parallel
program.

• We investigate and categorize the mechanisms of the
propagation of “idle waves” emanating from execution
delays across communicating processes under some simpli-
fying assumptions, notably a bulk-synchronous application
structure.

• We show how such idle waves interact and (partially)
cancel each other, proving that a linear wave equation is
inappropriate to describe the phenomenon.

• We give an analytic expression for the speed of an idle
wave in a noise-free homogeneous system under core-
bound computational load, i.e., code whose performance
is purely limited by in-core resources. The formula
takes into account execution time, communication time,
communication topology, and communication mode (eager
vs. rendezvous).

• We investigate the impact of injected, fine-grain exponen-
tial noise on the propagation speed and lifetime of idle
waves and show how the decay of the wave depends on
the strength of the noise.

• We demonstrate that the application slowdown caused
by strong idle waves may be unobservable due to the
presence of noise.

Note that we deliberately restrict ourselves to simple point-
to-point communication patterns here. In our opinion, those
must be studied first in order to understand more complex
situations like multi-dimensional communication topologies
and collectives. This paper is organized as follows: In Section II
we introduce some important terms and categorize the execution
and communication scenarios under investigation. Section III
gives details about our hardware and software setup and the
inherent node-level noise structure of the cluster system we
use for the benchmarks. The mechanisms of delay propagation
under various conditions are covered in Section IV, while
Section V deals with the analysis of idle waves decaying under
noise. Related work is covered in Section VI, and SectionVII
concludes the paper and gives an outlook to future work.

II. CATEGORIZATION OF PARAMETERS

A multitude of system and application parameters and
properties influence the phenomenology of delay propagation
and desynchronization. This section tries to categorize the most
relevant factors.
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3.	VARIABILITY-DRIVEN	IDLE	WAVE	
DECAY	IN	SCALABLE	PROCESSES

The	phenomenology	of	distributed	applications	suggests	a	physical	
interpretation	of	individual	processes	as	a	set	of	coupled	oscillators	
whose	inherent	frequencies	are	in^luenced	by	coupling	potential

𝑁/ ∶ System	size; 𝑇01 :	Communication	topology

𝑉01 𝜃 : Coupling	potential	re^lects	bottleneck	structure

𝜁0 𝑡 : Local	noise; 𝜏: Interaction	noise
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