
Ayesha Afzal <ayesha.afzal@fau.de>, Georg Hager (advisor), Gerhard Wellein (advisor)

Department of Computer Science | Erlangen National High Performance Computing Center| Friedrich-Alexander University Erlangen-Nu ̈rnberg, Germany

POSTER
ARTIFACT

http://tiny.cc/PosterArtifacts

4.	DE-SYNC	WAVEFRONT	FORMATION	FOR	
ACROSS-PROCESSES	BOTTLENECK

1.	MOTIVATION	AND	CHALLENGES 2.	COMMUNICATION-DEPENDENT	IDLE	WAVE	
PROPAGATION	VELOCITY	𝒗𝒑 (NO	VARIABILITY)

KEY-TAKEAWAYS 5.	BANDWIDTH	SHARING	MODEL	FOR	BACK-
TO-BACK	DIFFERENT	KERNELS	TO	PREDICT	
IF	DE-SYNC	IS	AMPLIFIED	OR	DAMPED

8.	OUTLOOK	AND	CONCLUSION7.	PHYSICAL	OSCILLATOR	MODEL6.	USABILITY	AND	GENERALIZATION

Research	vision
“White-box”	-irst-principle	performance	

modelling	of	distributed-memory	
applications	that	incorporates	the	

in-luence	of	variability

Problem
Variability	can	bring

acceleration,	speed	down,	or	neither

Idle	wave	decay	driven	by		structured	
variability	owing	to	system	topology

Nonlinear	
interaction	of
idle	waves

20
Time	step

Ra
nk

5
15
25
35
45
55
65
75
85
95

DOI:10.1109/CLUST
ER.2019.8890995

DOI:10.13140/RG.2.2
.28259.50726

DOI:10.1109/CLUST
ER.2019.8890995

DOI:10.13140/RG.2.2
.28259.50726

Afzal	et	al.

Afzal	et	al. Afzal	et	al.

DOI:10.13140/RG.2.2
.28259.50726

DOI: 10.1007/978-3-
030-50743-5_20

arXiv: 2011.00243
[cs.DC]

Time	step 50 Time	step 50

𝐀 : = 𝐁 : + 𝐬 ∗ 𝐂(:)

Time	step 50

Ra
nk

Process-scalable
code

De
-s
yn
c	w

av
ef
ro
nt

Sy
nc
	w
av
ef
ro
nt

De
-s
yn
c	w

av
ef
ro
nt

N=24	(4	sockets)

Cores	per	socket,	N

𝐀 :
= 𝐁

: +
𝐜𝐨𝐬
(
𝐂(:
)

𝐃(:
)
)

Processes required for full memory bandwidth

0 5 10 15 20 25

Process
-scalabl

e	code

100

50

0M
em

or
y	
ba
nd
w
id
th
	[G
B/
s]

Single	socket	SuperMUC-NG	@2.3	GHz,	non-temporal	stores,	
bi-dir,	1024	B,	close	chain,	distance-1	communication

Possible	de-sync	scenarios
1. Multi-phase	applications
2. Spatial	multitasking	in	GPUs
3. Task-parallel	programs

DOI: 10.1007/978-3-
030-50743-5_20

Afzal	et	al.

DOI:10.1109/CLUST
ER.2019.8890995

Afzal	et	al.

http://tiny.cc/IRese
archPoster-ISC21

128x64x64	size,	6.7	GB	data	set,	non-
blocking	MPI	routines,	16	Emmy	sockets

Chebychev Filter	Diagonalization

Analogy

Parallel	MPI	
processes

𝑇!"#$ 𝑇!"## 𝑇!"#$ 𝑇!"##

m$

m%

m&

m'

𝜃'

V'&

V&%

V%(

direct-neighbour	
communication

Variability
is	not	all	

detrimental

De-sync
of	processes

causes	automatic	
communication	overlap	
and	bottleneck	evasion

Slower
idle	waves,

strong	bottleneck
and	variability	help	in	
amplifying	the	de-sync

Across	context,
if	de-sync	is

desirable,	apply	
optimization	techniques
amplifying	the	de-sync

Idle	waves	can	propagate	or	
distort	according	to	variability	
caused	by	collective	algorithm

Wall-clock time	[s]

D
efault	M

PI_Reduce

Binom
ial

Topology	aw
are	Shum

ilin’s

Ra
nk

0
10	
20
30
40
50
60
70
80
90
100
119

Ra
nk

Emmy SuperMUC-NG Hawk

Wall-clock time	[s]

40
60
80

48
72
96

48
64
80

0
10	
20
30
40
50
60
70
80
90
100
119

0

24

48

72

96

120

144

0
16
32
48
64
80
96
112
128

Idle	wave	decay	with	increasing	
intensity	of	variability

à no	runtime	penalty	at	25	%	

30 30 30

Ra
nk

0	% 20	% 25	%
0

9

19

29

39

49

59
Time	step

Variability	=

Rendezvous,	𝜎 = 2

Close-chain	
(dense	MVM)	

Leading Edge

Trailing Edge

Bi-dir
(LBM)

𝑑 = 3,12,3, 𝜎 = 1

Ra
nk

0
10	
20
30
40
50
60
70
80
90
100
119

Time	[s]
1.6			1.8				2				2.2			2.4

One	MPI	wait	only

𝑑 = 12, 𝜎 = 1
Time	[s]

One	MPI	wait	only

Ra
nk

0
10	
20
30
40
50
60
70
80
90
100
119

1.56							1.72			1.88

Model	for	
runtime	of	
distributed-
memory	
parallel	

applications

Model	for
runtime	of	
computation
(Roofline,	ECM
or	other	model)	

Model	for
runtime	of	

communication
(Hockney,	LogGP or	

other	model)	

Model	for	
runtime
driven	by	
variability

MPI	- parallelized	Lattice Boltzmann	Fluid	Solver
Actual	measurement
Compositional	model

302. lattice	cell,	8	GB	data	set,	non-
blocking	MPI	routines,	10	Emmy	sockets

𝑑 = 12, 𝜎 = 2 (jacobi)
Time	[s]

Ra
nk

M
sg
[K
B]

0
10	
20
30
40
50
60
70
80
90
100
119

13		13.4				13.8				2.2			14.6.		15
One MPI	wait per	dir

2	x	6	x	10	process	grid	

Afzal	et	al.

MPI+OpenMP
Wall-clock time	[s]

Ra
nk

0

5

10

15

Desynchronization and Wave Pattern Formation 407

0 2 4 6 8 10
0

10

20

30

40

50

Cores per socket, N

P
e
rf
o
rm

a
n
c
e
[G

fl
o
p
/
s] nb = 32

nb = 2

(a) Single socket performance

0 2 4 6 8 10
0

100

200

300

Number of nodes

P
e
rf
o
rm

a
n
c
e
[G

fl
o
p
/
s] 1T, nb = 2

5T, nb = 2
10T, nb = 2

(b) MPI only vs. hybrid communication, nb = 2,

(c)

0 2 4 6 8 10
0

200

400

Number of nodes

1T, nb = 32
5T, nb = 32
10T, nb = 32

nb = 32

15

10

5

R
a
n
k

159

120

80

40

0

Time step

R
a
n
k

(c) Timeline visulization

10T

1T

Fig. 8. ChebFD application for the topological insulator matrix Topi-128-64-64
(static OpenMP scheduling, AVX vectorized and aligned execution, niter = 5) running
on (single leaf switch connected) homogeneous Emmy nodes. (a) Performance scaling
with OpenMP on a contention domain for nb = 2 and nb = 32, (b) scaling up to 10
nodes for nb = 2 and nb = 32, and different numbers of threads per process, (c) time-
line for a specific number of iterations of pure MPI vs. full hybrid execution for nb = 2
and 8 Emmy nodes.

and a polynomial filter degree np = 500, which are realistic values. The optimistic
code balance assuming perfect cache reuse on the block vectors is [12]

Bc =
260/nb + 80

146
byte
flop

, (3)

which is well beyond the machine balance of all current CPUs even for large
nb, rendering the code memory bound according to a naive Roofline model. In
reality, the nb = 32 case is already close to core bound since intra-cache data
transfers begin to limit the performance of the code on some platforms, such as
Emmy [13]: Fig. 8a shows performance vs. cores per socket for nb = 2 and nb = 32,
and indeed the latter cannot fully saturate the bandwidth and achieves only
41Gflop/s out of the bandwidth-bound Roofline limit of 66Gflop/s. Figure 8b
shows strong scaling from 2–10 nodes for both cases with 2 (10 threads each) to
20 (single-threaded) MPI processes on each Emmy node. At nb = 2, fewer threads
have a clear advantage while the situation is reversed at nb = 32. The more
saturating code (nb = 2) has ample opportunity for desynchronization without
threading (which is shown in the timeline comparison in Fig. 8c). In Fig. 8c,
the upper panel shows MPI only while the lower panel shows hybrid with 10
threads (1 process) per socket, both on eight Emmy nodes. The more scalable
code (nb = 32) shows no spontaneous desynchronization without threading, and
the fully hybrid code can benefit from the reduced number of MPI messages.

7 Related Work

There is very little research on idle wave propagation and pattern formation
in parallel code, especially in the context of memory-bound programs. Hence,
none of the existing prior work addressed spontaneous pattern formation and

MPI
Wall-clock time	[s]

Ra
nk

0

40

80

120

159

Time	step 1 20 60 100 500 1000 5000 10000

0.
1

0.
2

0.
3

0.
4

0

20

40

60

80

100

R
a
n
k

Actual
Model t = 1

2.
2

2.
3

2.
4

2.
5

t = 20

6.
7

6.
8

6.
9 7

t = 60

11
.2

11
.3

11
.4

11
.5

t = 100

56
.3

56
.4

56
.5

56
.6

Time [s]

t = 500

57
.7

11
2.

8

11
2.

9

11
3

11
3.

1

t = 1000

11
5.

5

56
3.

6

56
3.

7

56
3.

8

56
3.

9

t = 5000

57
7.

5

1
12

6.
8

1
12

6.
9

1
12

7

1
12

7.
1

t = 10000

1
15

5

Fig. 2: Measured LBM irregular structure in comparison with expected model regularity. The plot shows that the time steps
with more irregularity (iterations in between and at the end of the results) manifest maximum percentage variation towards
better performance (2.25% at time step t = 500 and 2.42% at time step t = 10000).

LBM time steps t, from t = 1 to t = 10,000, where the location
of the time step along the wall-clock time axis is marked on
each process (red markers). For reference, we also show the
expected positions according to the simple nonoverlapping
execution-communication model (1). While the deviation from
the model and the variation across processes is still small
after 20 time steps (< 0.1s), a global structure has emerged
at t = 500 with a fundamental “wavelength” equal to the size
of the system (100 processes) and an amplitude of 0.3 wall-
clock seconds. This pattern is not static but shifts and changes
shape, as can be seen at t = 5,000 and t = 10,000. Moreover,
the actual runtime at t = 10,000 is about 28 s smaller than
expected. While this is only a deviation of about 2.5%, the
pattern is interesting and may show up more prominently with
applications that have different communication overheads and
patterns.

The examples above have demonstrated that some scenarios
allow noise to act as an application accelerator as well as a
slowdown factor. There is, however, a very complex interplay
between application code execution, the message passing
library, and the network, which leads to a rich spectrum of
local and collective phenomena in parallel code, especially
when noise is present. The accelerating effect is certainly not
guaranteed. In this work we want to study a particular aspect
of this theme: the wave-like propagation of execution delays
(“idle waves”) [11] through the network under the influence
of system noise and variable injected noise.

C. Contributions

The major contribution of this paper is the investigation of
idle waves, which are phases of inactivity in a parallel program
that propagate across processes. They emanate from strong
delays occurring on individual processes of an MPI-parallel
program.

• We investigate and categorize the mechanisms of the
propagation of “idle waves” emanating from execution
delays across communicating processes under some simpli-
fying assumptions, notably a bulk-synchronous application
structure.

• We show how such idle waves interact and (partially)
cancel each other, proving that a linear wave equation is
inappropriate to describe the phenomenon.

• We give an analytic expression for the speed of an idle
wave in a noise-free homogeneous system under core-
bound computational load, i.e., code whose performance
is purely limited by in-core resources. The formula
takes into account execution time, communication time,
communication topology, and communication mode (eager
vs. rendezvous).

• We investigate the impact of injected, fine-grain exponen-
tial noise on the propagation speed and lifetime of idle
waves and show how the decay of the wave depends on
the strength of the noise.

• We demonstrate that the application slowdown caused
by strong idle waves may be unobservable due to the
presence of noise.

Note that we deliberately restrict ourselves to simple point-
to-point communication patterns here. In our opinion, those
must be studied first in order to understand more complex
situations like multi-dimensional communication topologies
and collectives. This paper is organized as follows: In Section II
we introduce some important terms and categorize the execution
and communication scenarios under investigation. Section III
gives details about our hardware and software setup and the
inherent node-level noise structure of the cluster system we
use for the benchmarks. The mechanisms of delay propagation
under various conditions are covered in Section IV, while
Section V deals with the analysis of idle waves decaying under
noise. Related work is covered in Section VI, and SectionVII
concludes the paper and gives an outlook to future work.

II. CATEGORIZATION OF PARAMETERS

A multitude of system and application parameters and
properties influence the phenomenology of delay propagation
and desynchronization. This section tries to categorize the most
relevant factors.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on February 21,2021 at 11:42:35 UTC from IEEE Xplore. Restrictions apply.

Wall-clock time	[s]

Ra
nk

99

80

60

40

20

0

HPCG	benchmark	on	Broadwell

DDOT2-Allreduce
overlap

symGS-DDOT2
overlap

Ra
nk

Pe
rm
ut
ed
Ra
nk

Wall-clock time	[s]

3.	VARIABILITY-DRIVEN	IDLE	WAVE	
DECAY	IN	SCALABLE	PROCESSES

The	phenomenology	of	distributed	applications	suggests	a	physical	
interpretation	of	individual	processes	as	a	set	of	coupled	oscillators	
whose	inherent	frequencies	are	in^luenced	by	coupling	potential

𝑁/ ∶ System	size; 𝑇01 :	Communication	topology

𝑉01 𝜃 : Coupling	potential	re^lects	bottleneck	structure

𝜁0 𝑡 : Local	noise; 𝜏: Interaction	noise

𝑣! [
ranks
s

]

=
𝜎. 𝜅(𝑑)

𝑇"#$! + 𝑇"#$$

Interaction	termNoise
Inverse	
time	step

̇𝜃! = 𝜔! + 𝜁! 𝑡 +
𝑣"
𝑁"

*
#$%

&

𝑇!# 𝑉!#(𝜃(𝑡, 𝜏))

We	propose
A	non-linear	physical	coupled	phase	oscillators	model

Motivation

Cost
effective

Unknown
analogy

Cluster	and	code	
characterization	tool

End-user
tool

Addressing	the	
analysis	and	

simulation	challenges	
of	the	dynamics	of	
parallel	computing

Encompassing	the
performance-limiting
bottlenecks,	analysis

guides	appropriate	code
changes	and	insight	into	the	
hardware-software	interaction

Connecting	parallel	
computing	dynamics
to	the	physical	world,	
oscillator	model	can
serve	as	a	high-level

cluster	characterization	tool

Uni-dir,	eager,
open-chain,	d, 𝜎 = 1

Idle	period	on	rank	5	
propagates	depending	on	
communication	protocol,	
concurrency	and	topology

Exploration	of	
various	aspects	and	
application	scenarios	

of	“white-box”
modelling
approach

𝐀 : = 𝐁 : + 𝐜𝐨𝐬(
𝐂(:)
𝐃(:))

0

23

47

71

95

DOI: 10.1007/978-3-
030-78713-4_19

DOI: 10.1007/978-3-
030-78713-4_19

De-sync	and	speed-up	increase	with	time

