
AWeak Scalability Study of File Aggregation in Asynchronous,
Multi-Level Checkpointing

Mikaila J. Gossman
Clemson University

USA
mikailg@g.clemson.edu

Bogdan Nicolae (advisor)
Argonne National Laboratory

USA
bnicolae@anl.gov

Melissa C. Smith (advisor), Jon
C. Calhoun (advisor)
Clemson University

USA
{smithmc,jonccal}@clemson.edu

1 INTRODUCTION
Checkpointing is a common pattern of many scientific HPC appli-
cations that facilitates use cases such as: checkpoint-restart based
fault-tolerance, enabling job preemption, verification and exchange
of intermediate results, etc. It is also a difficult pattern that involves
multiple distributed processes writing large amounts of data concur-
rently, which puts pressure on the I/O subsystems. Checkpointing
represents up to 80% of the I/O load of HPC systems [4] and this
trend is predicted to continue. Therefore, the performance and
scalability of checkpointing is critical to HPC systems.

The most widely used checkpoint strategies are synchronous:
these strategies block the application until checkpointing is com-
plete to stable storage. However, this leads to unacceptable over-
heads, which not only increase the runtime of HPC applications, but
may also cause undesired interruptions that delay other tasks (e.g.,
analytics or training of AI models based on intermediate results). To
reduce the checkpointing overheads, asynchronous checkpointing
strategies [3] write to fast, node-local storage in a blocking fashion
(which causes negligible interruptions), then flush the checkpoints
to persistent storage in the background as the application resumes.

To maximize the potential of leveraging concurrent I/O opera-
tions, asynchronous checkpointing runtimes like VELOC [3] adopt
a file-per-process write strategy. This allows a simple I/O manage-
ment strategy in the background that is both fast and minimizes
interference with the application due to competition for resources.
However, this also leads to a large number of files, which may be-
come difficult to manage from user perspective and/or introduce
metadata bottlenecks (especially on parallel file systems). Therefore,
it is important to aggregate checkpoints into a small number of
files/objects that are easier to manage and/or are optimized for the
layout of data repositories.

The problem of checkpoint aggregation has been extensively
studied for synchronous checkpointing but remains virtually unex-
plored in the context of asynchronous checkpointing, where it is
non-trivial due to resource contention [5] during background I/O
operations.

This poster focuses on how to alleviate this issue. It discusses
two asynchronous checkpoint aggregation strategies and presents a
series of preliminary results that evaluate their effectiveness using
synthetic benchmarks.

2 POSIX AGGREGATION
The POSIX method is an extension of VELOC’s original implemen-
tation. We calculate the global offset in the shared file via parallel
prefix sum during the local phase of checkpointing. Application
processes return to computation, and separate processes spawned

via the active backend asynchronously flush the local checkpoints
to the calculated offsets with POSIX writes.

We tested our aggregation strategies on a custom microbench-
mark; it spawns N (1 → 4096) processes that write 1 gigabyte
(GB) checkpoint files to be persisted to the PFS. Experiments ran
on Argonne National Lab’s Theta System [1]. The POSIX method
suffers from false sharing, where only one process can access a
stripe (storage disk) of a shared file at a time. When writes are not
stripe-aligned, this introduces I/O bottlenecks.

3 MPI-IO AGGREGATION
MPI-IO is used by optimized synchronous aggregation libraries,
like GenericIO [2]. MPI-IO utilizes collective calls, which boost
performance by aggregating and coordinating I/O requests from
processes on a communicator, eliminating false sharing and reduc-
ing the number of processes interacting with the PFS.

Collective operations require synchronization (for data exchange)
and single calls do not allow writes to discontiguous regions of a
file. But each backend may contribute multiple files at discontigu-
ous offsets. Our experiments show a trade-off between the cost of
synchronization and serialization (to reduce synchronization), and
that it was more beneficial to reduce the synchronization rather
than serial cost. Still, serialization leads to performance bottlenecks.

4 CONCLUSION
Our results found that simple POSIX and MPI-IO strategies are not
suitable for aggregation in asynchronous checkpointing. POSIX
suffers from false sharing and MPI-IO suffers from serialization
and synchronization. Currently, we are working to devise a novel
aggregation strategy that addresses false sharing, while eliminating
some of the required synchronization for using MPI-IO.

REFERENCES
[1] Top500 2021. Theta - Cray XC Cray XC40, Intel Xeon Phi 7230 64C 1.3GHz, Aries

interconnect. Top500. https://www.top500.org/system/178926/
[2] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,

David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, and
et al. 2016. HACC: Simulating sky surveys on state-of-the-art supercomputing
architectures. New Astronomy 42 (Jan 2016), 49–65. https://doi.org/10.1016/j.
newast.2015.06.003

[3] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous Check-
pointing at Large Scale. In 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). 911–920. https://doi.org/10.1109/IPDPS.2019.00099

[4] Fabrizio Petrini and Wu Feng. 2000. Scheduling with global information in dis-
tributed systems. 225–232. https://doi.org/10.1109/ICDCS.2000.840933

[5] Shu-Mei Tseng, Bogdan Nicolae, Franck Cappello, and Aparna Chandramowlish-
waran. 2021. Demystifying asynchronous I/O Interference in HPC applications.
The International Journal of High Performance Computing Applications 35, 4 (2021),
391–412.

https://www.top500.org/system/178926/
https://doi.org/10.1016/j.newast.2015.06.003
https://doi.org/10.1016/j.newast.2015.06.003
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1109/ICDCS.2000.840933

	1 Introduction
	2 POSIX Aggregation
	3 MPI-IO Aggregation
	4 Conclusion
	References

