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Results

✹The figure on the left shows the resulting aggregated bandwidth for the local checkpointing phase:

✶GenericIO (gio) in yellow does not use local storage resulting in significantly lower throughput

✶All VELOC methods, even with aggregation, mask the flushing speed to the application since it promptly
resumes-thus we can further show that the prefix-sum operation (which requires synchronization)
introduces negligible overhead

✹The figure on the right shows the time it takes to write all checkpoints to the parallel file system (PFS):

✶Flushing speeds improved dramatically for VELOC methods compared to works presented at SC'21 by
deactivating optional modules that operate during the flush phase (e.g. error correction)

✶MPI-IO performance continues to dominate POSIX performance throughout this study but still suffers
serious performance degradation, as neither implemented aggregation strategies reach 1/10th of the peak
write BW on Theta and even GenericIO barely reaches the 1/10th mark @ 1024 processes

✹This study shows that VELOC's file-per-processes flushing style is the most efficient way to flush checkpoints

✹A large gap is observable between the one-file-per-process async I/O strategy (as implemented by VELOC)
and the other compared async I/O aggregation strategies, which presents a research opportunity

Discussion

✹Checkpointing captures a globally consistent state of an application during runtime
for a variety of scenarios: fault tolerance, migration, on-demand preemption using
suspend-resume, algorithms revisiting previous states (e.g., adjoint computations)

✹Checkpoints need to be persisted to stable storage (e.g. PFS) with minimal overhead
✹Asynchronous checkpointing techniques (e.g. VELOC [1]) reduce overhead by writing

to local storage and then concurrently flush to stable storage in the background
✹It is desirable to aggregate local checkpoints into a smaller number of files/objects on

persistent storage (for easier management and/or better I/O performance)
✹State-of-art I/O aggregation techniques are designed for synchronous I/O and is

insufficiently explored in the context of checkpointing

Motivation: The Intersection of Checkpointing and I/O Aggregation
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A Weak Scalability Study of File Aggregation in Asynchronous, 
Multi-Level Checkpointing

✹ Approaches: three aggregation strategies compared with no aggregation
✶VELOC Default: one file per process, (async)
✶POSIX: aggregates all checkpoints into 1 file; calculates each offset in global file via

parallel-prefix-sum and issues a POSIX write for each checkpoint, (async)
✶MPI-IO: Same as POSIX but issues an MPI collective write for each checkpoint

instead, (async)
✶GenericIO: aggregates all checkpoints into 1 file; single rank calculates total size

and offset for each process and divides work among the processes, processes issue
MPI collective writes to global file, (sync)

✹Platform: Argonne’s Theta supercomputer
✶Persistent storage: Intel Enterprise Edition Lustre PFS (172 GB/s)
✶Local storage: in-memory temporary file system (/dev/shm)

✹Weak scalability study: 16 processes / compute node, 1 GB checkpoint / process
✶Increasing number of processes (16 → 1024)

Experimental Setup

✹ MPI-IO is optimized for synchronous parallel I/O to aggregate data into single files
✹ POSIX (and object-store based APIs) offers the most performance potential and

flexibility for implementing optimized asynchronous aggregation strategies
✹ We are currently working to develop a novel, resource-aware aggregation strategy

designed to meet the specific challenges of asynchronous checkpointing (i.e. resource
contention)

Conclusions and Future Work

✹Our custom benchmark spawns N (1 → 1024) total processes and performs a weak 
scalability study using 16 processes / compute node

✹Initial studies presented at SC’21 (poster and paper at the SuperCHECK workshop) 
showed results obtained on small-scale run (N = 1 → 128) of weak and hard scalability 
studies

✶weak scalability study used 1 process / compute node

✶hard scalability iteratively divides 128 / i , {∀ i ∈ S | S = {1,2,4,8,16,32}}

✹This poster complements our previous studies with larger-scale weak scalability 
experiments
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