Holcombe Department of

ELECTRICAL AND A Weak Scalability Study of File Aggregation in Asynchronous,
COMPUTER ENGINEERING Multi-Level Checkpointing Argon ne

Clemson’ University Mikaila Gossman, Bogdan Nicolae (advisor), Melissa C. Smith (advisor), Jon C. Calhoun (advisor) NATIONAL LABORATORY

/
J

Motivation: The Intersection of Checkpointing and I/O Aggregation Results

3 Checkpointing captures a globally consistent state of an application during runtime
for a variety of scenarios: fault tolerance, migration, on-demand preemption using

Bandwidth for Local Checkpointing Phase Bandwidth for Flushing Checkpoint Phase

: Co. . , o _ checkpoint strategy 804 checkpoint strateqgy
suspend-resume, algorithms revisiting previous states (e.g., adjoint computations) mm veloc original local mm veloc original total
B gio 70 { ™ gio

¥ Checkpoints need to be persisted to stable storage (e.g. PFS) with minimal overhead 800 -

Bl veloc POSIX local
B veloc MPI-IO local

B veloc POSIX total

¥ Asynchronous checkpointing techniques (e.g. VELOC [1]) reduce overhead by writing | = veloc_MPH-I0_total

=)
-

to local storage and then concurrently flush to stable storage in the background

¥ 1t is desirable to aggregate local checkpoints into a smaller number of files/objects on
persistent storage (for easier management and/or better 1/0 performance)

-

-

-
LN
-

3 State-of-art 1/0 aggregation techniques are designed for synchronous 1/O and is
insufficiently explored in the context of checkpointing

Aggregated Bandwidth [GB/s]
L I
- -

Aggregated Bandwidth [GB/s]

()
-
I

Contribution: Weak Scalability Study of /O Aggregation

—
-
i

3 Our custom benchmark spawns N (1 > 1024) total processes and performs a weak

=
I

16 32 od 128 256 512 1024
Total # of Processes

16 32 64 128 256 512 1024

scalability study using 16 processes / compute node Total # of Processes

¥ Initial studies presented at SC'21 (poster and paper at the SuperCHECK workshop)
showed results obtained on small-scale run (N =1 - 128) of weak and hard scalability Discussion
studies

¥ The figure on the left shows the resulting aggregated bandwidth for the local checkpointing phase:
* weak scalability study used 1 process / compute node

* hard scalability iteratively divides 128 /i, {(Vi€S | S={1,2,4,8,16,32}}

* GenericlO (gio) in yellow does not use local storage resulting in significantly lower throughput

* All VELOC methods, even with aggregation, mask the flushing speed to the application since it promptly

¥ This poster complements our previous studies with larger-scale weak scalability resumes-thus we can further show that the prefix-sum operation (which requires synchronization)

Ef@ﬁ@ introduces negligible overhead

experiments

TR AR

3.?..5

More details available in our ¥ The figure on the right shows the time it takes to write all checkpoints to the parallel file system (PFS):

Sk
previous work

* Flushing speeds improved dramatically for VELOC methods compared to works presented at SC'21 by
deactivating optional modules that operate during the flush phase (e.g. error correction)

* MPI-10 performance continues to dominate POSIX performance throughout this study but still suffers

Experimental Setup serious performance degradation, as neither implemented aggregation strategies reach 1/10th of the peak

3 Approaches: three aggregation strategies compared with no aggregation
* VELOC Default: one file per process, (async)

* POSIX: aggregates all checkpoints into 1 file; calculates each offset in global file via
parallel-prefix-sum and issues a POSIX write for each checkpoint, (async) A large gap is observable between the one-file-per-process async I/O strategy (as implemented by VELOC)

write BW on Theta and even GenericlO barely reaches the 1/10th mark @ 1024 processes
¥ This study shows that VELOC's file-per-processes flushing style is the most efficient way to flush checkpoints

*MPI-IO: Same as POSIX but issues an MPI collective write for each checkpoint and the other compared async |/O aggregation strategies, which presents a research opportunity
instead, (async)

* GenericlO: aggregates all checkpoints into 1 file; single rank calculates total size
and offset for each process and divides work among the processes, processes issue
MPI collective writes to global file, (sync)

¥ Platform: Argonne’s Theta supercomputer
* Persistent storage: Intel Enterprise Edition Lustre PFS (172 GB/s)
* Local storage: in-memory temporary file system (/dev/shm)
¥ Weak scalability study: 16 processes / compute node, 1 GB checkpoint / process

* Increasing number of processes (16 - 1024)

~ Clemson University and Argonne National

Co n CI u S I O n S a n d F Utu re WO rk Laboratory facilitated the experimental
study thanks to the Palmetto cluster and,

respectively, the Theta supercomputer.

3 MPI-10 is optimized for synchronous parallel I/O to aggregate data into single files This material is based in part upon work

supported by the National Science

¥ POSIX (and object-store based APIs) offers the most performance potential and Foundation under Grant No. SHF-1910197
flexibility for implementing optimized asynchronous aggregation strategies ofScience, under contract DEACOD.
¥ We are currently working to develop a novel, resource-aware aggregation strategy [
designed to meet the specific challenges of asynchronous checkpointing (i.e. resource

contention)

	Slide Number 1

