
EfficiencyandEffectivenessAnalysisofa
ScratchpadMemoryonFPGAandGPUfor
DiffuseRadiationTransferSimulation

FURUKAWA Kazuki YAMAGUCHI Yoshiki YOSHIKAWA Kohji KOBAYASHI Ryohei
FUJITA Norihisa BOKU Taisuke UMEMURA Masayuki

Introduction

Radiation hydrodynamics is a fundamental scientific concept to unveil the cosmic physics
process in astrophysics. In this project, we target the acceleration of a set of Radiative Transfer
(RT) simulation code, the ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree) [1]
program. The ARGOT framework consists of two algorithms (Fig. 1), and the concrete target
in this study is the ART (Authentic Radiation Transfer)[2] scheme, which computes the Diffuse
Radiation Transfer. We have implemented the ART scheme on GPUs and FPGAs, and analyse
them in this poster.

Figure 1: Basic Concept of ARGOT [1]

Diffuse RT Simulation

The ART scheme takes more than 90% of total
simulation, which is not not matrix calculation.
It has to calculate results of the different atoms.

Based on Ray Tracing algorithm:

• Rays go straight ahead without reflection.
• Rays can have 768 or 3,072 different angles
(N_ANG = 768, 3,072).

• Each Ray is computationally and geometri-
cally parallel and independent.

−→ Suitable for many-core architectures.
Algorithm 1: The most critical part of the ART

1: for ipix = 0 to N_ANG−1 do
2: for ray = 0 to N_MESH_SIDE2-1 do
3: I_old ← read_initial_intensity;
4: while Ray is in the current space do
5: M ← read_initial_mesh_data;
6: path_length ←
7: calc_pathlen(init_position[ray],angle[ipix]);
8: // Radiation intensity calculation
9: tau ← M.absorption * optical_path_length;

10: etau ← exp(-tau);
11: etaum1 ← 1.0 - etau;
12: I_new ← I_old * etau + M.source_func * etaum1;
13: // Update intensity for next mesh
14: I_old ← I_new;
15: // Atomic accumulation of mesh data
16: M.accum_I ← M.accum_I + I_new * etaum1;
17: M.accum_tau ← M.accum_tau + tau;
18: Write_back(M.accum_I, M.accum_tau);
19: end while // Loop for a single ray
20: end for // Loop for rays having the same angle
21: end for // Loop for angles

Memory Access is complex (Fig. 2):

When theARTdealswith 5123 meshes, it requires
more than 2GB for storage.

Figure 2: Memory Access of the ART

Application-Specific Buffering Scheme: PRISM

PRISM (PRefetchable and Instantly accessible Scratchpad Memory) [3]
Key Concept:

1. To increase available bandwidth
−→ Also increase memory access locality

2. To overlap computation and memory access

Realised by:

• Combination of external & internal memory
• Reusing mesh data many times on chip
• 2 of elongated prism shape subspace (Fig. 3)
−→ To put many spaghetti (ray) bundles in it

PRISM is Xilinx Alveo U280 FPGA / Verilog HDL Nvidia A100 GPU / CUDA C++
made up by UltraRAMs (960x36KB/Device) Shared Memory (160KB/SM)
a size of 72KB (2x UltraRAM block) 17KB / 160KB
____ for ray data Possible to communicate with neighbours Independent from others
mainly effective by Overlapping computation and mem access Increasing cache hit rate

In PRISM-GPU, the parallelism is increased by dividing into the several Ray Groups.

Figure 3: Comparison of Control Flows between PRISM-FPGA (Left) and PRISM-GPU (Right)

Implementation Result

Figure 4: Data Reuse Rate on Scratchpad
Memory (N_ANG is the number of ray an-
gles. Data is theoretical rate. FPGA is
always higher than GPU.)

Figure 5: Performance Comparisons on Various Implementations
(Result of PRISM is always the best. When the simulation size is
small, FPGA is better because GPU cannot hide its overheads.)

Conclusion

Using our proposed method, we conclude that the original ART can be accelerated by both FPGAs and
GPUs. An FPGA yields better when the simulation space is small, while a GPU is better when large
because of GPU’s high parallelism. Wealso prove that the PRISM reduces thememory access bottleneck
and contributes to a significant increase in the utilisation of the arithmetic circuits on the accelerators.

References
[1] T. Okamoto et al., “ARGOT: accelerated radiative transfer on grids using oct-tree,” Monthly Notices

of the Royal Astronomical Society, vol. 419, pp. 2855–2866, Feb. 2012.
[2] S. Tanaka et al., “A new ray-tracing scheme for 3D diffuse radiation transfer on highly parallel

architectures,” Publications of the Astronomical Society of Japan, vol. 67, pp. 62(1–16), May 2015.
[3] K. Furukawa et al., “An efficient RTL buffering scheme for an FPGA-accelerated simulation of diffuse

radiative transfer,” in 2021 International Conference on Field-Programmable Technology (ICFPT),
pp. 1–9, 2021.

Acknowledgements

This work was supported in part by the MEXT Next Generation High-
Performance Computing Infrastructures and Applications R&D Program, en-
titled “Development of Computing-Communication Unified Supercomputer
in Next Generation”, and in part by the JSPS KAKENHI #21H04869. Wewould
also acknowledge the support of Xilinx Inc. through theXilinx Univ. Program.


