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Introduction

R ] i , . _ . . ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree) code
Radiation hydrodynamics is a fundamental scientific concept to unveil the cosmic physics

process in astrophysics. In this project, we target the acceleration of a set of Radiative Transfer ARGOT scheme

(RT) simulation code, the ARGOT (Accelerated Radiative transfer on Grids using Oct-Tree) [1] | for po§t Source L7,
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for Diffuse Photon
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program. The ARGOT framework consists of two algorithms (Fig. 1), and the concrete target
in this study is the ART (Authentic Radiation Transfer)[2] scheme, which computes the Diffuse
Radiation Transfer. We have implemented the ART scheme on GPUs and FPGAs, and analyse
them in this poster. BRI

Figure 1: Basic Concept of ARGOT [1]

Diffuse RT Simulation Application-Specific Buffering Scheme: PRISM
The ART scheme takes more than 90% of total PRISM (PRefetchable and Instantly accessible Scratchpad Memory) [3]
simulation, which is not not matrix calculation. Kev C i Realised bv:
It has to calculate results of the different atoms. SR CE Pl ESE R £
Based on Ray Tracing algorithm: 1. To increase available bandwidth » Combination of external & internal memory
. Rays go straight ahead without reflection. 2—> Alsollncrease merrmry acc‘,lcess locality : gel:csTg metsr;j da.ta mahny tlmets) on Chlp,:- :
. Rays can have 768 or 3,072 different angles . To overlap computation and memory access of elongated prism s a.pe subspace (. |q. )
(N_ANG = 768, 3,072). — To put many spaghetti (ray) bundles in it
+ Each Ray is computationally and geometri- PRISM is Xilinx Alveo U280 FPGA / Verilog HDL Nvidia A100 GPU / CUDA C++
cally parallel and independent. made up b UltraRAMs (960x36KB/Device Shared Memory (160KB/SM
. y
— v Suitable for many-core architectures. a size of 72KB (2X UltraRAM bIOCk) 17KB / 160KB
: . " ____forray data Possible to communicate with neighbours | Independent from others
Algorithm 1: The most critical part of the ART mainly effective by || Overlapping computation and mem access | Increasing cache hit rate
1: for ipix = @ to N_ANG—1 do
2. for ray = @ to N_MESH_SIDE®-1 do In PRISM-GPU, the parallelism is increased by dividing into the several Ray Groups.
3: I_old < read_initial_intensity; |
+: while Ray is in the current space do T EEEes o Compute b Write | I A R srooetii Bundie
5: M < read 1nitial mesh _data; = N ? ’ N ., N Compute ' N ' | | g |
6: path_length <
7: calc_pathlen(init_position[ray],angle[ipix]); | . | . | an
8: // Radiation intensity calculation e\ g PE-127: CUDGPUS
1 * 1 . § ATON ,::::’E‘ | .5 Compute ite: | | i O | o
9: tau < M.absorption * optical_path_length; L I | § Asyne | S c———
10:  etau < exp(-tau); kcow . kco'oy SM-3 SR, - ATOM | gy ATOM T
11: etauml <« 1.0 - etau; | . T ? |
12: I new «— I old * etau + M.source func * etauml; » ,,>,' Ve '
13: // Update intensity for next mesh \ ;%
14 I old <« I new; O |
15: // Atomic accumulation of mesh data ‘
16: M.accum_I <« M.accum_I + I _new * etauml;
- Cﬂ;ﬁ;ﬂﬂ;ﬁi‘(‘ﬁcfuj,‘j“’“jj;‘c:mfi;u) Figure 3: Comparison of Control Flows between PRISM-FPGA (Left) and PRISM-GPU (Right)

19: end while // Loop for a single ray
20: end for // Loop for rays having the same angle
21: end for // Loop for angles

Implementation Result

Memory Access is complex (Fig. 2):
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When the ART deals with 512° meshes, it requires
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Figure 4: Data Reuse Rate on Scratchpad
Memory (N_ANG is the number of ray an- Figure 5: Performance Comparisons on Various Implementations
gles. Data is theoretical rate. FPGA is (Result of PRISM is always the best. When the simulation size is
always higher than GPU.) small, FPGA is better because GPU cannot hide its overheads.)
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Conclusion

Using our proposed method, we conclude that the original ART can be accelerated by both FPGAs and
GPUs. An FPGA yields better when the simulation space is small, while a GPU is better when large
because of GPU’s high parallelism. We also prove that the PRISM reduces the memory access bottleneck
and contributes to a significant increase in the utilisation of the arithmetic circuits on the accelerators.

Figure 2: Memory Access of the ART
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