
FPGA Memory System for HPC Applications using Addressable Cache

Norihisa Fujita(1,2,
Ryohei Kobayashi(1,2,
Yoshiki Yamaguchi(2,1 and
Taisuke Boku(1,2

Center for Computational Sciences, University of Tsukuba(1

Faculty of Engineering, Information and Systems, University of Tsukuba(2

► Introduction

Field Programmable Gate Array (FPGA)

FPGA is reconfigurable hardware and high-end FPGAs are HPC-ready

Fast inter-FPGA (up to 100Gbps x 4 links) communication using optical links

Digital Signal Processor (DSP) block for IEEE754 single-precision floating
number operations

High Level Synthesis (HLS)

HLS uses languages for software (e.g. C, C++, OpenCL) for FPGA
development

HLS reduces programming costs on FPGA

HLS allows HPC application developers to utilize FPGA technology

Issues for FPGA HPC

memory bandwidth is a big bottleneck

FPGA has only 76.8GB/s (4 channels of DDR4), whereas NVIDIA A100 has
2TB/s

High Bandwidth Memory 2 (HBM2) is high-bandwidth memory widely used in
accelerators for HPC

FPGA is one of such accelerators

Intel Startix 10 MX FPGA has HBM2 up to 512GB/s of bandwidth.

HBM2 architecture is different from DDR4. HBM2 is aggregated architecture, as
shown in Fig. 1.

Using all memory channels simultaneously is a big challenge for FPGAs.

Purpose of this study

We introduce a new memory architecture for FPGA to utilize HBM2 memory

Our system uses addressable cache as a working memory for computation

Programmers describe data transfer between the memory and the cache
explicitly

optimized and predictable performance

low resource consumption in FPGA compared to automatic cache

► HBM2 in Startix 10 MX FPGA

HBM2 Spec

2 stacks of HBM2 die

up to 16GB of capacity

up to 512GB/s of bandwidth

Each HBM2 stack has

8 physical memory channels

16 pseudo channels

256GB/s aggregated bandwidth

Total:

16 physical memory channels

32 pseudo channels

512GB/s aggregated
bandwidth

Figure 1: Internal connection between FPGA memory
and FPGA fabric for Intel Stratix 10 FPGAs.

► Proposed Memory System

Addressable cache

Scratchpad memory as data buffer on Block RAM (BRAM) inside FPGA

BRAM is low-latency and high-bandwidth memory

Burst data transfer between memory and cache

BRAM is SRAM, so random access is fast

Fast random access from application

Our cache is not automatic

Automatic cache consumes a lot of FPGA resource

We describe data transfer between memory and cache

PCI Express (PCIe) Controller

data transfer between CPU and
FPGA

Crossbars

Maximize flexibility of memory
access

HBM Controller (HBMC) and Memory
Controller (MC)

Packet converter (Internal packet
<=> AXI)

Write Burst Buffer

Read Buffer

Local Storage (LS)

128KB scratchpad memory per
LS

DMA controller between LS and
HBM2

RISC-V core for kernel control

Figure 2: Overview of Proposed Memory System with
two memory channels and one LS.

Preliminary Implementation

This system is under development

We plan to implement 4 crossbars with 8 MCs and 8 LSs (total: 32 MCs and 32 LSs)
in FPGA

► Software and API

Same code for simulation and
hardware

Memory Mapped IO (MMIO)
wrapper to use the same code

MMIO is the core to control PCIe
device

APIs are built on the wrapper
MMIO API

Stream API

In this system, we use small buffer
for computation

double buffering is needed to
hide memory access latency

we expect 10~20us for each
step (depending on LS size
and FPGA frequency)

fine-grain FPGA control is
required

To address this, we introduce
Stream API for fine-grain control

High-level C++ API to describe
FPGA behavior

Sending multiple commands
from host CPU at once

Loops on the device

Stream API

Simplified RISC-V core for
each LS as a controller

Stream API makes RISC-V
instructions for the
controller

Boost.YAP[1]: to construct
Expression Template (ET)

LibFirm[2]: to construct SSA
form, optimize data flow and
analyze data dependency

Register allocation based on
Perfect Elimination Order
(PEO) of dominator tree[3]

Up to 2 streams can be
executed simultaneously

Figure 3: Software stack.

ctrl->begin_config();

for (int s = 0; s < 2; s++) {

 define_stream(ctrl, s) {

 var i;

 var start;

 array_view<uint32_t> buffer(

 s == 0 ? buffer1 : buffer2);

 array_view<uint32_t> data(d_data);

 i = 0;

 start =

 (c * N_STREAMS + s) * CHUNK_SIZE;

 stream_for(i = 0,

 i < N_CHUNK / N_WORKERS,

 i = i + 1) {

 buffer(0, CHUNK_SIZE) =

 data(start, start + CHUNK_SIZE);

 if (s == 0) {

 kernel(0, 0, LOOP_LEN);

 } else {

 kernel(LOOP_LEN, LOOP_LEN, LOOP_LEN);

 }

 data(start, start + CHUNK_SIZE) =

 buffer(0, CHUNK_SIZE);

 start =

 start + N_WORKERS * CHUNK_SIZE;

 }

 }

}

ctrl->stream_start_and_sync();

ctrl->end_config();

Figure 4: Example code of Stream API.

► Preliminary Evaluation

Preliminary evaluation result on the simulator

two memory channels and one LS are implemented

Verilator is used to simulate the hardware

Simplified HBM2 model is used

Always one-cycle read and write latency

Reads and writes are executed simultaneously. (BW. is doubled than actual)

Each stream runs a loop with three steps:

for (i = 0; i < 4; i = i + 1)

1. DMAC reads 64KB of 32bit int array from HBM2 to LS

2. Kernel computes bitwise-not of each element of array

3. DMAC write back data from LS to HBM2

Figure 5 shows that two streams can keep memory bus busy

Figure 5: Waveform result of the simulation.

► Conclusion and Future Work

We proposed new memory system for HBM2 and HPC

We implemented Stream API for fine-grain FPGA control

Preliminary results showed the API worked as intended

Two streams to overlap data transfer with computation

Future Work

Performance evaluation on actual FPGA hardware

Implementing all HBM2 channels (32)

Implementing HPC application on this system

[1] Boost.YAP, https://www.boost.org/doc/libs/release/doc/html/yap.html [2] LibFirm, https://pp.ipd.kit.edu/firm/
[3] Sebastian Hack and Gerhard Goos, "Optimal register allocation for SSA-form programs in polynomial time", Information Processing Letters 98 (2006), pp. 150--155

Acknowledgements: This work was supported in part by the "Next Generation High-Performance Computing Infrastructures and Applications R&D Program" (Development of Computing Communication Unified Supercomputer
in Next Generation) of MEXT. This research was also supported in part by the Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and JSPS KAKENHI, Grant Number 21H04869.
We also thank the Intel University Program for providing the hardware and software.

