
Motivation
◼ Most of the conventional studies on NUMA awareness mainly assume to use 

homogeneous processors and/or processor cores [1]. 

◼ Most of the conventional studies on heterogeneous multi-core architectures 

mainly assume the homogeneous interconnection among cores [2]. 

Objective
◼ Consider both two factors, NUMA memory awareness and core heterogeneity, 

and deal with the task mapping problem on the new system configuration by 

properly combining memory-aware task mapping and heterogeneity-aware task 

mapping.

NUMA systems built with heterogeneous multi-core processors
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◼ Heterogeneous multi-core: as a new trend in processor design, a multi-core 

processor has evolved to employ a heterogeneous multi-core architecture 

integrating some kinds of cores with different performance and energy 

characteristics on a single chip. 

◼ NUMA architecture: the Non-Uniform Memory Access (NUMA) architecture has 

become a de facto standard in modern HPC systems. This memory architecture 

brings challenges such as conflicting requirements of minimizing remote access 

penalty and memory congestion.

◼ Task mapping: determining the allocation of tasks to processor cores, task 

mapping could significantly affect the usage of systems’ heterogeneity and 

memory resources. A proper task mapping will be a key to high performance and 

energy efficiency.

Memory-aware Task Mapping for 
Heterogeneous Multi-Core Systems

The workflow of the proposed mapping 

strategy

◼ Considering the two factors, this 

work proposes a task mapping 

strategy that switches between 

two priority options to determine 

the best mapping for the target 

application on the target system.

◼ The two proposed priority options 

are the memory-aware priority 

option and the heterogeneity-

aware priority option. 
• Choosing one of the priority options will 

prioritize the impact of that factor at the 

task mapping. 

• The influence of another factor will not 

be ignored but secondary.

◼ The proposed priority option 

switching mechanism selects 

appropriate priority options for 

individual systems and applications 

considering their performance 

characteristics.

◼ In the following examples, we show 

application characteristics as follows:
• Task icon size: task load

• Arrow width: comm. intensity

• Same arrow color: concurrent comm.

Memory-aware priority option

Heterogeneity-aware priority option
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Application characteristics:
• Task load heterogeneity

System configuration:
• Core performance heterogeneity

Step 1: Task to node mapping Step 2: Mapping within node

Step 1: Task to core type mapping Step 2: Mapping within core type 

Task Mapping with Considering both Memory and Heterogeneity

◼ Environment
• Platform: Sniper simulator

• Benchmarks: Rodinia-LavaMD, Splash2-fft

◼ Two applications with different 

characteristics are executed on target system 

using the proposed heterogeneity-aware 

priority option. 
• Compared with the round-robin mapping policy as 

baseline, Rodinia-LavaMD can get significant 

improvements in performance and energy 

efficiency while the Splash2-fft cannot. 

• The results show that heterogeneity-aware priority 

option is suitable only for some of the applications.

+Memory-aware Task Mapping Heterogeneity-aware Task Mapping

Higher performance and energy efficiency

Performance and energy impacts of using 

the heterogeneity-aware priority on different 

applications

◼ This work focuses on NUMA systems built with heterogeneous multi-core 

processors and proposes a new mapping strategy which includes:
• Two priority options: 

Memory-aware priority option and heterogeneity-aware priority option.

• A priority option switching mechanism: 

Considering the diversity of system configuration and application characteristics.

◼ Evaluation results on the simulator have shown the necessity of the two mapping 

priority options and the switching mechanism proposed in this work. 

◼ Our work will also investigate the key performance characteristics of applications 

that can be used to determine the mapping priority.

◼ As also shown in our previous work [1], the memory-aware priority option is suitable only 

for some of the applications, but not for all. This shows that only one priority option 

cannot provide a suitable mapping for all kinds of applications.
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Application characteristics:
• Tasks' memory access behavior

• Tasks' communication behavior

System configuration:
• Memory device capacity

• Core locations on NUMA nodes
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