
Motivation
◼ Most of the conventional studies on NUMA awareness mainly assume to use 

homogeneous processors and/or processor cores [1]. 

◼ Most of the conventional studies on heterogeneous multi-core architectures 

mainly assume the homogeneous interconnection among cores [2]. 

Objective
◼ Consider both two factors, NUMA memory awareness and core heterogeneity, 

and deal with the task mapping problem on the new system configuration by 

properly combining memory-aware task mapping and heterogeneity-aware task 

mapping.

NUMA systems built with heterogeneous multi-core processors

C0
Big

Core

C1
Big

Core

C2
Small 

Core

C3
Small 

Core

Last-level cache

Memory controller

NUMA Node 1

C4
Big

Core

C5
Big

Core

C6
Small 

Core

C7
Small 

Core

Last-level cache

Memory controller

NUMA Node 2

Interconnects

◼ Heterogeneous multi-core: as a new trend in processor design, a multi-core 

processor has evolved to employ a heterogeneous multi-core architecture 

integrating some kinds of cores with different performance and energy 

characteristics on a single chip. 

◼ NUMA architecture: the Non-Uniform Memory Access (NUMA) architecture has 

become a de facto standard in modern HPC systems. This memory architecture 

brings challenges such as conflicting requirements of minimizing remote access 

penalty and memory congestion.

◼ Task mapping: determining the allocation of tasks to processor cores, task 

mapping could significantly affect the usage of systems’ heterogeneity and 

memory resources. A proper task mapping will be a key to high performance and 

energy efficiency.

Memory-aware Task Mapping for 
Heterogeneous Multi-Core Systems

The workflow of the proposed mapping 

strategy

◼ Considering the two factors, this 

work proposes a task mapping 

strategy that switches between 

two priority options to determine 

the best mapping for the target 

application on the target system.

◼ The two proposed priority options 

are the memory-aware priority 

option and the heterogeneity-

aware priority option. 
• Choosing one of the priority options will 

prioritize the impact of that factor at the 

task mapping. 

• The influence of another factor will not 

be ignored but secondary.

◼ The proposed priority option 

switching mechanism selects 

appropriate priority options for 

individual systems and applications 

considering their performance 

characteristics.

◼ In the following examples, we show 

application characteristics as follows:
• Task icon size: task load

• Arrow width: comm. intensity

• Same arrow color: concurrent comm.

Memory-aware priority option

Heterogeneity-aware priority option

C0

C1

C2

C3

N
U

M
A

 N
o
d
e
 1

Interconnects

C4

C5

C6

C7

T0 T1

T2

T4 T5

T3

T6 T7

T0

T1

T4

T5

T2

T7

T6

T3

→Node 1

→Node 2

→Node 2

→Node 1

C0

C1

C2

C3

N
U

M
A

 N
o
d
e
 1

Interconnects

C4

C5

C6

C7

T0

T1

T2

T4 T5

T3

T6 T7

T0

T1

T2 T5

T4

T7

T6

T3

Big

Core

Small

Core

Application characteristics:
• Task load heterogeneity

System configuration:
• Core performance heterogeneity

Step 1: Task to node mapping Step 2: Mapping within node

Step 1: Task to core type mapping Step 2: Mapping within core type 

Task Mapping with Considering both Memory and Heterogeneity

◼ Environment
• Platform: Sniper simulator

• Benchmarks: Rodinia-LavaMD, Splash2-fft

◼ Two applications with different 

characteristics are executed on target system 

using the proposed heterogeneity-aware 

priority option. 
• Compared with the round-robin mapping policy as 

baseline, Rodinia-LavaMD can get significant 

improvements in performance and energy 

efficiency while the Splash2-fft cannot. 

• The results show that heterogeneity-aware priority 

option is suitable only for some of the applications.

+Memory-aware Task Mapping Heterogeneity-aware Task Mapping

Higher performance and energy efficiency

Performance and energy impacts of using 

the heterogeneity-aware priority on different 

applications

◼ This work focuses on NUMA systems built with heterogeneous multi-core 

processors and proposes a new mapping strategy which includes:
• Two priority options: 

Memory-aware priority option and heterogeneity-aware priority option.

• A priority option switching mechanism: 

Considering the diversity of system configuration and application characteristics.

◼ Evaluation results on the simulator have shown the necessity of the two mapping 

priority options and the switching mechanism proposed in this work. 

◼ Our work will also investigate the key performance characteristics of applications 

that can be used to determine the mapping priority.

◼ As also shown in our previous work [1], the memory-aware priority option is suitable only 

for some of the applications, but not for all. This shows that only one priority option 

cannot provide a suitable mapping for all kinds of applications.

[1] Agung, M., Amrizal, M. A., Egawa, R., & Takizawa, H. (2020). Deloc: A locality and memory-congestion-

aware task mapping method for modern numa systems. IEEE Access, 8, 6937-6953.

[2] Ding, J. H., Chang, Y. T., Guo, Z. D., Li, K. C., & Chung, Y. C. (2014). An efficient and comprehensive 

scheduler on Asymmetric Multicore Architecture systems. Journal of Systems Architecture, 60(3), 305-314.

This work is partially supported by MEXT Next Generation High-Performance Computing Infrastructures 

and Applications R&D Program "R&D of A Quantum-Annealing-Assisted Next Generation HPC 

Infrastructure and its Applications," Grant-in-Aid for Scientific Research(B) #21H03449, and JST SPRING, 

Grant Number JPMJSP2114.

N
U

M
A

 N
o
d
e
 2

N
U

M
A

 N
o
d
e
 2

Application characteristics:
• Tasks' memory access behavior

• Tasks' communication behavior

System configuration:
• Memory device capacity

• Core locations on NUMA nodes

H
Heterogeneity-aware

potential benefits

M
Memory-aware

potential benefits

H<M

Yes

No

Priority option switching mechanism

→

→

Big

Core
→

Small

Core
→


