Multi-GPU computing of moving boundary flow using lattice Boltzmann method

Akira Hatakeyama

Graduate School of Engineering, The University of Tokyo

Takashi Shimokawabe

Information Technology Center, The University of Tokyo

Background

Moving boundary flow is one of important problems of Computational fluid dynamics (CFD).

Communication between GPUs or compute nodes decrease parallel efficiency.

We present implementations and GPU assignment to increase parallel efficiency of immersed boundary – lattice Boltzmann method (IB-LBM), the numerical method of moving boundary flow, and show the results of the performance improvement.

Lattice Boltzmann method (LBM) 2.

Time evolution equation about velocity distribution function.

D3Q27 model

 e_{26}

Implementations 6.

6.1. naïve

G communication

1 row

• 3 rows communication.

6.2. communication reduction

- •1 row communication for *f*.
- Communication of only 9 direction of 27 for f.
- •Not communicating body force more than $3\Delta x$ from boundary.

f communication

Only velocity distribution function of direction to analysis domain is used.

YZ allocation – same node comm in y, over node comm in z.

ZY allocation – same node comm in z, over node comm in y.

For example, computational domain is divided into 2 in y direction and 8 in z. (Y-2 Z-8 split)

8. Conclusion

In this poster, we present implementations and the way to assign a GPU to each subdomain in 2-dim split and evaluate performance of IB-LBM. Comm. Reduction implementation improves performance, and overlap more. Proper GPU assignment results high performance also.

HPC ASIA 2022