
A.C. Minor &W. Feng | Dept. of Computer Science | Virginia Tech | acminor@vt.edu & wfeng@vt.edu

Midas: A System for Achieving “Golden” Reproducibility in HPC
A.C. Minor &W. Feng | Dept. of Computer Science | Virginia Tech | acminor@vt.edu & wfeng@vt.edu

With the exponentially improving serial performance of CPUs from
the 1980s and 1990s slowing to a standstill by the 2010s, the HPC
community has seen parallel computing (viamulti-coreCPUs,many-
core GPUs and TPUs, and even FPGAs) become ubiquitous, which,
in turn, has led to a proliferation of parallel programming models,
e.g., CUDA, OpenACC, OpenCL, and SYCL. This diversity in hard-
ware platform and programming model has forced application users
to port their codes from one hardware platform to another (e.g.,
CUDA on NVIDIA GPU to OpenCL on AMDGPU) and demonstrate
reproducibility via ad-hoc unit testing. To more rigorously ensure
reproducibility betweencodes,weproposeMidas, a system to ensure
that the results of the original code match the results of the ported
code by leveraging the power of snapshots to capture the state of a
system before and after the execution of a kernel.
1 Midas
To achieve reproducible cross-platform code, we createdMidas, a
system composed of three main subsystems:Golden,Midas Touch,
and Flamel, as shown in Fig. 1.

[[field]]

name = "sum_grid"

converter = "Dim3"

host_variable.cuda = "sum_grid_d"

mem_type = "Host"...

Converters::Dim3Converter.Deserialize(

&sum_grid_d,

snapshot.sum_grid(),

make_options<MemoryType::Device>());...

Midas Touch: A system for quick,

cross-platform serialization

2

Flamel: An interface to Midas Touch

for ease of serialization

1

Protobuf Message
sum_grid: {

x: 10,

y: 20,

z: 1,

}...

Golden: A system for verifiable

consistency

3

Figure 1: Midas SystemOverview

Golden serves as the foundation of Midas. It reliably snapshots
data to disk and compares the snapshots. Its design was inspired by
the C++ library Approval Tests [1] and uses the concept of “goldens.”
Goldens are a snapshot of what your data (input or output) should be
for a given function. Current snapshots and goldens can then be com-
pared to determine if your cross-platform program has changed its
behavior. The general process for usingGolden is to save a snapshot
from a veri�ed source and then use this to validate future snapshots.

TouseGoldendirectly, snapshotsmust behandmade for each func-
tion that we want to snapshot. Because this process is tedious and
error-prone, we createdMidas Touch, an interface and collection of
converters to handle common serialization tasks. If needed, users can
write custom converters using the providedMidas Touch interfaces.

Flamel is a high-level description language to generate Midas
Touch code. AsMidas Touch is a generic library, it can be verbose to
use. Also, it is embedded into a programming language, and hence,
must follow the syntax for that language. Flamel abstracts this to a
TOML interface. TOML [2] is a data-description language, similar
to JSON, that allows one to specify metadata for a snapshot and not
worry about theMidas Touch code generated for that snapshot.

This project was supported in part by NSF I/UCRC CNS-1822080.

2 Challenges
Non-determinism can change snapshots between runs. If the change
was due to a bug across platformports, we could validate said change
and update the snapshot or port; but if it is due to non-determinism,
then the snapshot will continuously change, whether a bug was in-
troduced or �xed. A common source of non-determinism in parallel
HPC code is atomic operations across threads.

Fig. 2 shows an example of a reversible kernel.1 For this kernel, we
are processing a set of 3D arrays. If an array cell has been previously
updated, wemove to the next array in the stack and process the same
cell location. This forms anon-deterministic ordering of values along
atomic time. Furthermore, for our kernel, the generated values are
deterministic in value and contain the thread identi�cation (i.e., id)
that processed them. So, we have a non-deterministic ordering of de-
terministic valueswith thread id that canbeused to impose anoutput
ordering.That is,we sort arraycells over time fromsmallest to largest
thread, which represents a possible execution ordering. Thus, we
can compare any two results via this deterministic transformation.

atomic time

array N

array 0

One possible

thread ordering

3 5 1 2

atomic time

Normalized

thread ordering

1 2 3 5

atomic time

Figure 2: Reversible Non-determinism Example

3 Results
As a case study, we use FenZi, a molecular dynamics code [3], orig-
inallywritten inCUDAandthen largelyauto-translated toOpenCL[5]
viaCU2CL [4].Midas validated the reproducibility of the OpenCL
code from the original CUDA code. Our poster will show how.
References
[1] Approval Tests. https://github.com/approvals/ApprovalTests.cpp.
[2] T. Preston-Werner et al. TOML: Tom’s Obvious Minimal Language.

https://github.com/toml-lang/toml.
[3] N. Ganesan, M. Taufer, B. Bauer, and S. Patel. FenZi: GPU-Enabled

Molecular Dynamics Simulations ... In IEEE Int’l Parallel and Distributed
Processing Symp. Workshops and PhD Forum, 2011.

[4] G. Martinez, M. Gardner, and W. Feng. CU2CL: A CUDA-to-OpenCL
Translator for Multi- and Many-Core Architectures. In IEEE Int’l Conf.
on Parallel & Distributed Systems, 2011.

[5] P. Sathre, M. Gardner, and W. Feng. On the Portability of CPU-
Accelerated Applications via Automated Source-to-Source Translation.
In Proc. Int’l Conf. on High Performance Computing in Asia-Paci�c
Region, 2019.

1By reversible, wemean that the operation can bemade deterministic through removing
and/or imposing an ordering.

