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1. Need for realistic data for testing
2. Differences in parallel programming 

frameworks
• Global variables (textures, symbol memory)
• Data types (float vector, complex vector)

3. Non-deterministic kernels
4. Floating-point hardware differences
5. Accurately comparing results
6. User’s skill level 

• Must be easy to use by application scientists and 
researchers
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• Clang tool for parsing C/C++ kernel code 
(CUDA/OpenCL/etc.)

• Generates Flamel file of all 
implicit/explicit inputs

• Description language for Midas Touch 
snapshots

• Provides a simple interface for Midas 
Touch

• Collection of converters from compute 
data types to Golden serialization types 
and interface for custom converters

• Generic library to help generate 
snapshots from compute device data

• Library to snapshot data to disk and 
compare snapshots

• Base for generic results comparisons 
• Handles floating-point tolerance 

differences

Ease of use

Generic
Comparison

• Design • Clang tool for parsing and generating 
Flamel files from CUDA and OpenCL

• Code generation for
CUDA and OpenCL
Midas Touch code

• Interface for custom
serialization types
• Clean-up the Flamel file format

• Converters between 
Protobuf and CUDA/OpenCL
data types

• Clean-up API for ease of platform 
porting and code generation
• Protobuf converters for other parallel 

computing frameworks (SYCL, etc.)

• Generic snapshots
and floating-point safe 
comparisons using Protobuf

• Floating-point difference statistics
• Better support for custom

floating-point safety measures
Implemented Future Work
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Step 1: Capture input and output of kernel during program execution

Step 2: Create unit test for kernel
*Potentially remove non-determinism

FenZi* Kernels Tested

Deterministic
HalfKickGPU
CoordsUpdate
CheckNonbondNum
BondedForce – 39 parameters
SolveVelocityConstraints
SolveBondConstraints
nonbondforce
CellClean
UpdateCoords
PMEForce_medium
ChargeSpread_small
BCMultiply

Non-deterministic
CellBuild

CellBuild reversible non-determinism

Motivation Challenges

Design Goals Example

Results with FenZi Molecular Dynamics CodeImplementation

Two parallelized 
code versions
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*FenZi is a molecular dynamics simulator written in CUDA [3]
with an OpenCL port largely auto-translated [5] using CU2CL [4]
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Source: Hennessey & Patterson, CACM, 2019

• Stagnating serial performance à need for parallelism
• Increase in heterogenous parallelism (e.g., CPU, GPU, 

FPGA) via associated parallel programming frameworks 
(e.g., CUDA, OpenCL)

• Increase in code porting between parallel programming 
frameworks

Solution: Midas, a system that uses snapshots to ensure 
that the results from a ported parallel code match the 
results from the original parallel code, as inspired by 
“Approval Tests” [1].
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