
Midas: A System for Achieving “Golden” Reproducibility in HPC
A.C. Minor and W. Feng | Dept. of Computer Science | Virginia Tech | {acminor, wfeng}@vt.edu

HPC Asia 2022: The International Conference on High Performance Computing in Asia-Pacific Region

1. Need for realistic data for testing
2. Differences in parallel programming

frameworks
• Global variables (textures, symbol memory)
• Data types (float vector, complex vector)

3. Non-deterministic kernels
4. Floating-point hardware differences
5. Accurately comparing results
6. User’s skill level

• Must be easy to use by application scientists and
researchers

Goal:
Consistent

comparable results

Generic to any
framework

Global variables,
data types

Generic to any
kernel

Non-determinism

Generic to any
hardware

Different
floating-point

implementations

Test against
real data

Previous results
should be
verifiable

Easy to use

Scientists and
researchers should

want to use it

Aurum

Flamel

Midas Touch

Golden

• Clang tool for parsing C/C++ kernel code
(CUDA/OpenCL/etc.)

• Generates Flamel file of all
implicit/explicit inputs

• Description language for Midas Touch
snapshots

• Provides a simple interface for Midas
Touch

• Collection of converters from compute
data types to Golden serialization types
and interface for custom converters

• Generic library to help generate
snapshots from compute device data

• Library to snapshot data to disk and
compare snapshots

• Base for generic results comparisons
• Handles floating-point tolerance

differences

Ease of use

Generic
Comparison

• Design • Clang tool for parsing and generating
Flamel files from CUDA and OpenCL

• Code generation for
CUDA and OpenCL
Midas Touch code

• Interface for custom
serialization types
• Clean-up the Flamel file format

• Converters between
Protobuf and CUDA/OpenCL
data types

• Clean-up API for ease of platform
porting and code generation
• Protobuf converters for other parallel

computing frameworks (SYCL, etc.)

• Generic snapshots
and floating-point safe
comparisons using Protobuf

• Floating-point difference statistics
• Better support for custom

floating-point safety measures
Implemented Future Work

GPU

Application
Code … Snapshot Kernel

Input Run Kernel Snapshot Kernel
Output*

Copy
Memory

Copy
Memory

…

CU2CL

CUDA Kernel

OpenCL Kernel

App
Code in
CUDA

App
Code in
OpenCL

GPU

GPU

Snapshotted
Kernel Input

Snapshotted
Kernel Output

Snapshot
Kernel

Output*

Snapshot
Kernel

Output*
Run

Kernel

Run
Kernel

Compare

Compare

Same?

Same?

Copy Memory

Copy Memory

Copy Memory

Step 1: Capture input and output of kernel during program execution

Step 2: Create unit test for kernel
*Potentially remove non-determinism

FenZi* Kernels Tested

Deterministic
HalfKickGPU
CoordsUpdate
CheckNonbondNum
BondedForce – 39 parameters
SolveVelocityConstraints
SolveBondConstraints
nonbondforce
CellClean
UpdateCoords
PMEForce_medium
ChargeSpread_small
BCMultiply

Non-deterministic
CellBuild

CellBuild reversible non-determinism

Motivation Challenges

Design Goals Example

Results with FenZi Molecular Dynamics CodeImplementation

Two parallelized
code versions

References
[1] Approval Tests. https://github.com/approvals/ApprovalTests.cpp.
[2] T. Preston-Werner et al. TOML: Tom’s Obvious Minimal Language. https://github.com/toml-lang/toml.
[3] N. Ganesan, M. Taufer, B. Bauer, and S. Patel. FenZi: GPU-Enabled Molecular Dynamics Simulations ... In IEEE Int’l Parallel and Distributed Processing Symp. Workshops and PhD Forum, 2011.
[4] G. Martinez, M. Gardner, and W. Feng. CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-Core Architectures. In IEEE Int’l Conf. on Parallel & Distributed Systems, 2011.
[5] P. Sathre, M. Gardner, and W. Feng. On the Portability of CPU-Accelerated Applications via Automated Source-to-Source Translation. In Proc. Int’l Conf. on High Performance Computing in Asia-Pacific Region, 2019.

*FenZi is a molecular dynamics simulator written in CUDA [3]
with an OpenCL port largely auto-translated [5] using CU2CL [4]

synergy.cs.vt.edu www.vt.edu

Source: Hennessey & Patterson, CACM, 2019

• Stagnating serial performance à need for parallelism
• Increase in heterogenous parallelism (e.g., CPU, GPU,

FPGA) via associated parallel programming frameworks
(e.g., CUDA, OpenCL)

• Increase in code porting between parallel programming
frameworks

Solution: Midas, a system that uses snapshots to ensure
that the results from a ported parallel code match the
results from the original parallel code, as inspired by
“Approval Tests” [1].

CU2CL

Result 1

CUDA

OpenCL

GPU

CPU/GPU/FPGA

Result 2

= ?

Acknowledgement: This project was supported in part by NSF I/UCRC CNS-1822080.

https://github.com/approvals/ApprovalTests.cpp

