
OpenACC Implementation of Radiative Transfer Simulation Code
Ryohei Kobayashi1, Norihisa Fujita1, Yoshiki Yamaguchi2, Taisuke Boku1,

Kohji Yoshikawa1, Makito Abe1 and Masayuki Umemura1
Center for Computational Sciences, University of Tsukuba1

Faculty of Engineering, Information and Systems, University of Tsukuba2
Tsukuba, Ibaraki, Japan

kobayashi@cs.tsukuba.ac.jp

1 ABSTRACT
Graphics processing units (GPUs) offer good peak performance
and high memory bandwidth. They have been widely used in high-
performance computing (HPC) systems as accelerators. However,
they are not suitable for all applications, and there are applications
where they don’t efficiently work on. One of such applications is
multiphysics simulation. Multiphysics is defined as the coupled
processes or systems involving more than one simultaneously oc-
curring physical fields and the studies of and knowledge about these
processes and systems. Therefore, multiphysics applications per-
form simulations with multiple interacting physical properties and
there are various computations within a simulation, and GPU-non-
suited ones can be included. Because of that, accelerating simulation
speed by GPU only is quite difficult and this is why we try to com-
bine GPU and FPGA and make the FPGA cover GPU-non suited
computation. We call this concept Cooperative Heterogeneous Ac-
celeration with Reconfigurable Multidevices (CHARM) and have
been working on GPU-FPGA-accelerated computation for radiative
transfer simulation in astrophysics as a proof of concept [1].

The implementation method of GPU-FPGA-accelerated compu-
tation is a mixture of CUDA and OpenCL programming, which
means that the computation kernels running on GPUs are written
in CUDA and those running on FPGAs are written in OpenCL. We
do not write all computation kernels in OpenCL for the following
three reasons. First, since most of the existing HPC applications
are CUDA-based implementations, it is very burdensome for pro-
grammers to rewrite the entire code in OpenCL. Secondly, even
if OpenCL is a platform that is designed to run applications in a
heterogeneous environment, in order to use both GPUs and FPGAs
at the same time, it is necessary to separately compile and link the
computation kernels using the OpenCL compiler for GPUs and the
OpenCL compiler for FPGAs. This is essentially the same as the
CUDA and OpenCL programming environments. Finally, most of
the GPUs used in HPC are made by NVIDIA, and it is not hard
to imagine that it is easier to maximize the performance of GPUs
by using CUDA, which is a programming model that follows the
GPU architecture. For these reasons, we use a mixture of CUDA and
OpenCL programming. On the other hand, such a multi-lingual pro-
gramming imposes a heavy burden on programmers, and therefore,
a programming environment with higher usability is required.

We are currently working on a programming environment that
enables to use both accelerators in a GPU-FPGA equipped HPC
cluster systemwith OpenACC. Since it is a directive-based program-
ming model, we can specify to the compiler by directives which
part of the application should be offloaded to which accelerator.
In addition, Oak Ridge National Laboratory (ORNL) is developing

0

2

4

6

8

10

12

14

OpenMP 12 threads

(gcc4.8.5)

OpenMP 12 threads

(intel18.0.0)

CUDA impl.

(gcc4.8.5-cuda11.0)

CUDA impl.

(intel18.0.0-cuda11.0)

OpenACC impl.

(nvhpc20.9)

E
x
e
c
u
ti
o
n
 t
im
e
 [
s
]

ARGOT

ART

Others

Figure 1: Performance comparison between OpenMP, CUDA,
and OpenACC implementations. The problem size was 643.

a compiler that can write computation kernels for FPGAs as well
as GPUs in OpenACC. We are currently collaborating with ORNL
with the goal of realizing cooperative computation of both acceler-
ators in a GPU-FPGA equipped HPC cluster system, and as part of
this collaboration, we use the compiler being developed by ORNL
to realize the high usability GPU-FPGA-accelerated computation
described above.

Given the above background, we implement the radiative transfer
simulation code with OpenACC and evaluate the performance by
comparing with those of OpenMP-based CPU implementation and
CUDA-based GPU implementation. The compilation software are
GCC version 4.8.5 and Intel compiler 18.0.0 for OpenMP-based im-
plementation, CUDA version 11.0, and NVHPC 20.9 for OpenACC-
based implementation. Our experimental machine is the Cygnus
supercomputer and we used a single computation node for the per-
formance comparison. This is a heterogeneous platform composed
of three types of devices: two Intel® Xeon® Gold 6126 CPUs, a four
NVIDIA V100 GPUs for PCIe-based servers (Gen3 x16), and two
BittWare 520N boards equipped with Intel® FPGA connected to
the CPU through a PCIe Gen3 x16 interface. In this evaluation, we
used a single CPU and GPU as located on the same CPU socket to
avoid the performance degradation caused by a PCIe access over
the Intel UPI (Ultra Path Interconnect). Fig. 1 shows the comparison
result on a computation node of the Cygnus supercomputer and
shows that there is almost no difference between the CUDA and
OpenACC implementations.

REFERENCES
[1] Ryohei Kobayashi, Norihisa Fujita, Yoshiki Yamaguchi, Taisuke Boku, Kohji

Yoshikawa, Makito Abe, and Masayuki Umemura. 2020. Multi-Hybrid Accel-
erated Simulation by GPU and FPGA on Radiative Transfer Simulation in As-
trophysics. Journal of Information Processing 28 (2020), 1073–1089. https:
//doi.org/10.2197/ipsjjip.28.1073

https://doi.org/10.2197/ipsjjip.28.1073
https://doi.org/10.2197/ipsjjip.28.1073

	1 Abstract
	References

