
Ryohei Kobayashi(1,2, Norihisa Fujita(1,2, Yoshiki Yamaguchi(2,1, Taisuke Boku(1,2, Kohji Yoshikawa (1,3, Makito Abe(1,3 and
Masayuki Umemura(1,3

OpenACC Implementation of Radiative Transfer Simulation Code

ACKNOWLEDGEMENT

1: Center for Computational Sciences, University of Tsukuba, Japan
2: Faculty of Engineering, Information and Systems, University of Tsukuba, University of Tsukuba, Japan
3: Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan

This work was supported in part by the ``Next Generation High-Performance Computing Infrastructures and Applications R&D Program'' (Development of Computing Communication Unified
Supercomputer in Next Generation) of MEXT. This research was also supported in part by the Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and JSPS
KAKENHI, Grant Number 21H04869. We also thank Dr. Naruhiko Tan of NVIDIA for his advice on OpenACC optimization.

❖OpenACC implementation
Loop optimizations
lParallel regions are specified like OpenMP

ØReplace #pragma omp parallel for with #pragma acc parallel loop
üThe CUDA implementation is based on the OpenMP implementation, so the parts that
are offloaded to the GPU should be equivalent.

üFunction calls in parallel regions should be OpenACCed with #pragma acc route seq.
lAdd asnyc clause for asynchronous execution
lThe parallel granularity is set based on the block size and number of
threads of the CUDA implementation
ØSet num_gang and vector_length

❖ Introduction

Data management

Magnetic

ElectricalThermal

Reaction Fluid

AcousticStructural

❖ Conclusion and future work
lWhat we did is...

Øas a preliminary evaluation for the realization of GPU-FPGA integration with high usability, we implemented the ARGOT code by OpenACC and evaluated the
performance of OpenMP-based CPU implementation and CUDA-based GPU implementation

Øwe confirmed that...
üFor small mesh size: OpenACC-based implementation achieved up to 77% of the performance CUDA-based ARGOT code implementation
üFor large mesh size: OpenACC-based implementation achieved up to 1.29x better performance compared to CUDA-based ARGOT code implementation

lNext step is...
Øto evaluate multi-node versioned OpenACC implementation’s performance by comparing to OpenMP and CUDA implementations

❖ Performance comparison

Motivation

What we have to do first is…

target mesh grid
Simulation initialized

ARGOT method
ART method

Output result

etime > sim_time
YES

Simulation finished
NO

etme + Δt

Send init data to GPU

#pragma acc update
(when necessary)

lData transfer is implemented to be equivalent to the CUDA
implementation
ØAt initialization, use #pragma acc enter data copyin() to send data to GPU
memory
ü#pragma acc update host() is used only for processes that need to be run on the host
(pulling the necessary data from the GPU)

ü#pragma acc update device() is used to update the GPU memory with the host's updated
data

ØAs with Loop optimizations, async clause is added to asynchronous execution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

OpenMP 12 threads
(gcc4.8.5)

OpenMP 12 threads
(intel18.0.0)

CUDA impl.
(gcc4.8.5-cuda11.0)

CUDA impl.
(intel18.0.0-cuda11.0)

OpenACC impl.
(nvhpc20.9)

Ex
ec
ut
io
n
tim
e
[s
]

ARGOT

ART

Others

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

OpenMP 12 threads
(gcc4.8.5)

OpenMP 12 threads
(intel18.0.0)

CUDA impl.
(gcc4.8.5-cuda11.0)

CUDA impl.
(intel18.0.0-cuda11.0)

OpenACC impl.
(nvhpc20.9)

Ex
ec
ut
io
n
tim
e
[s
]

ARGOT

ART

Others

0

2

4

6

8

10

12

14

OpenMP 12 threads
(gcc4.8.5)

OpenMP 12 threads
(intel18.0.0)

CUDA impl.
(gcc4.8.5-cuda11.0)

CUDA impl.
(intel18.0.0-cuda11.0)

OpenACC impl.
(nvhpc20.9)

Ex
ec
ut
io
n
tim
e
[s
]

ARGOT

ART

Others

0

20

40

60

80

100

120

140

OpenMP 12 threads
(gcc4.8.5)

OpenMP 12 threads
(intel18.0.0)

CUDA impl.
(gcc4.8.5-cuda11.0)

CUDA impl.
(intel18.0.0-cuda11.0)

OpenACC impl.
(nvhpc20.9)

Ex
ec
ut
io
n
tim
e
[s
]

ARGOT

ART

Others

lRealizing a way to easily use GPU and FPGA by
OpenACC
ØWhy OpenACC?

ühigh maintainability
ühigh portability
→ quite friendly to application developers!

lWhy GPU-FPGA coupling is needed?
ØKeyword: Multiphysics
ØSimulations with multiple interacting physical
properties
üspace ‒ particle reaction
üfluid dynamics with chemical reaction
ümacroscopic/microscopic hybrid simulation for
molecular dynamics

ØVarious computations are included within a
simulation
→ Hard to accelerate simulation speed by GPU only

lInvestigating the performance change by converting to OpenACC
Øwe implemented ARGOT code with OpenACC and evaluated its performance
by comparing with those of OpenMP-based CPU implementation and CUDA-
based GPU implementation

lARGOT code: an astrophysics simulation code
Ødeveloped in Center for Computational Sciences, University of Tsukuba
Øcombining two types of radiative transfer

üARGOT method
- a radiative transfer from a spotlight (point source)

üART method
- a radiative transfer from spatially distributed light

ØCPU (OpenMP) and GPU (CUDA) implementations are already available

lOthers
Øsolving chemical reactions and the
radiative heating and/or cooling of each
mesh
üComputation of a mesh highly independent
from one another, which is why the GPU
implementation can accelerate their
execution

lARGOT method
ØThe larger the mesh size, the more
noticeable the performance degradation
of the CUDA impl. (this is because of
cudahostalloc)

lART method
ØSmall mesh size: 73% ~ 76% of CUDA
impl. Performance

ØLarge mesh size: almost same as CUDA
impl. (1.1x better when 1283 mesh size)

Hardware specification
CPU Intel Xeon Gold 6126 x 2
Host
Memory

192 GiB (16 GiB DDR4-2666
ECC RDIMM x 6 chan. x 2)

GPU NVIDIA Tesla V100 (PCIe
Gen3 x16) x 4

GPU Memory 32 GiB CoWoS HBM2
@ 900 GB/s with ECC

Software specification
OS CentOS 7.9
Host
Compiler

gcc 4.8.5, Intel compiler
18.0.0 (for OpenMP impl.)

CUDA
Toolkit

CUDA 11.0.221 (for CUDA
impl.)

OpenACC
Compiler

NVIDIA HPC SDK 20.9

Low
er is better

Low
er is better

Low
er is better

Low
er is better

Mesh size: 163 Mesh size: 323

Mesh size: 643 Mesh size: 1283

lEvaluation testbed
ØCygnus supercomputer

used in this study

(a single node used in this study)

ARGOT method ART method

Each ray is
mapped to each
thread, and
radiative transfer
from point sources
is performed in
parallel.

Each ray is mapped to a thread,
and radiative transfer is
performed in parallel

Simulation flow of ARGOT code

We aim to combine GPU and FPGA to
improve simulation speed
(offloading GPU non-suited

computation part to the FPGA)
Schematic representation of Multiphisics

�)�	���������������
����������(��������

����)

�)�	����������
��	��	����)�����
��)�
����������(������

����)

Make both devices work together
in OpenACC programming model

GPU

FPGA

Our target application: ARGOT code
(one of the Multiphisics simulations)

lis to solve the radiative transfer from point radiation sources
lbuilds an oct-tree data structure for the
distribution of radiation sources
Ø It's a 3-dimensional problem space,
so it's an octave tree

ØFor point of view from the target mesh ,
it is treated as a same light source if the light
sources fall within a certain degree

lis similar to Tree-Code in gravity calculation
Øsuitable for the GPU
ØEach ray is assigned to each CUDA thread,
and then these computations are conducted
in parallel

target mesh grid

effective number of sources : Ns ➡ log Ns

ARGOT method
lART method is based on ray-tracing method

Ø3D target space split into 3D meshes
ØRays come from boundaries and move in straight in
parallel with each other

lThis method is not suitable for SMID-style arch.
ØMemory access pattern for mesh data is varies
depending on ray’s direction
ü causing a decrease in cash hit ratio

ØAtomic operations are needed
ü for processing the superimposition of the effects of
multiple rays on the shaded mesh

ü To avoid atomic operations, ray tracing along the red
and blue light must be separately performed
• causing the memory access patterns to become more
scattered Arrows and yellow cloud show

rays and gas to compute reactions,
respectivelyART method

1.33x
slowdown

1.23x
slowdown

1.09x
better 1.29x

better

