OpenACC Implementation of Radiative Transfer Simulation Code
Ryohei Kobayashi‘2, Norihisa Fujita''2, Yoshiki Yamaguchi?!, Taisuke Boku'!2, Kohji Yoshikawa (I3, Makito Abe'!3 and

Masayuki Umemura‘!s3

1: Center for Computational Sciences, University of Tsukuba, Japan
2: Faculty of Engineering, Information and Systems, University of Tsukuba, University of Tsukuba, Japan
3: Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan

< Introduction What we have to do first is...
®|nvestigating the performance change by converting to OpenACC

Motivation Make both devices work together »we implemented ARGOT code with OpenACC and evaluated its performance
" in OpenACC programming model by comparing with those of OpenMP-based CPU implementation and CUDA-
based GPU implementation

® ARGOT code: an astrophysics simulation code

»developed in Center for Computational Sciences, University of Tsukuba
»combining two types of radiative transfer

vARGOT method
- a radiative transfer from a spotlight (point source)

®Realizing a way to easily use GPU and FPGA by

OpenACC
»Why OpenACC?
v’high maintainability

v'high portability
— quite friendly to application developers!

®\Why GPU-FPGA coupling is heeded? — VART method
~Keyword: Multiphysics | | E B0 . - a radiative transfer from spatially distributed light
»Simulations with multiple interacting physical B et e »CPU (OpenMP) and GPU (CUDA) implementations are already available
prOpertleS Mec e = ®is to solve the radiative transfer from point radiation sources
v'space - particle reaction | , Sbuilds an octitree deta structure for the (e
vtluid dynamics with chemical reaction ot e | oo oeime ebo0leM space. BN e
v'macroscopic/microscopic hybrid simulation for I o) methon) | DAt e a anons ot achese 1 ihe light o o
molecular dynamics e iR /4
: : : Ly . N : TR
»Various computations are included within a s similar to Tree-Code in gravity calculation / \
Si mu |ati0 N > Ea((j:ht r:ay Itsh assignedptc% etgch CUDA tkéreatd,d «Z}/ Bg\\
— Hard to accelerate simulation speed by GPU onl inparallel o e SONTHE (-
. . peed by Y """ ARGOT method o Ly
We aim to combine GPU and FPGA to Structural e
improve simulation speed o taraet aomfication: ARGOT cod - 30 target space st nto 30 meshes RN
. . . » Rays come from boundaries and move in straight in
(offloading GPU non-suited Schematic representation of Multiphisics (Ounre 2?&68&&'&&'@,&8 Simu|ati%?]5 Th.parya”e'hw‘;“.e““°“‘e.r e lg NIAAIAIAIAIAIA),
CompUtatlon part to the FPGA) ° >I§/Igr]neotrvc;cc|§s:gztf:rlrﬁoremecs):\ data is-\?;[%ees e 4
dependipg or:jray’s direction - ' / / i / /
\/ca.usmga gcrease in cash hit ratio / |
‘ >At‘?m|0 ODerat‘lon? zr:unzreiﬂegsitiono the effects o 1
<+ OpenACC implementation i el SN S AN
and biue ﬁéih:t“:%u%‘%eéété%%%r?%tlg"éé'%%rzn%rég N NIV
Loop optimizations s
. N Data management ART method
®Parallel regions are specified like OpenMP a .
>Replace #pragma omp parallel for with #pragma acc parallel loop ®Data transfer is implemented to be equivalent to the CUDA
v The CUDA implementation is based on the OpenMP implementation, so the parts that implementation
are offloaded to the GPU should be equivalent. > At initialization, use #pragma acc enter data copyin() to send data to GPU
v'Function calls in parallel regions should be OpenACCed with #pragma acc route seq,. memory
® Add asnyc clause for asynchronous execution v'#pragma acc update host() is used only for processes that need to be run on the host
L . (pulling the necessary data from the GPU)
®The parallel granUIarlt.y IS set base.d on the block size and number of v'#pragma acc update device() is used to update the GPU memory with the host's updated
»Set num_gang and vector_length and radiative transfer is »As with Loop optimizations, async clause is added to asynchronous execution
performed in parallel
h grid I Simulation initialized Send init data to GPU
L *’g«;”% ~N—u [N /,L /f [L]1]
— REe. ; [1/ [1]
/ v Py ARGOT method #pragma acc update
. / e
Each ray is s /] o e etme + At ART m (when necessary)
e / _ ethod
mapped to each / | \\ / / , / /
thread, and /G R |
radiative transfer / \ / / / | / / 0 I
from point sources / / / / / / / / / utput result
is performed in |)r\\ | e G S, ,
parallel. 3 € Ll s NO YES N
a;i) / / / / / / / / —

ARGOT method ART method Simulation flow of ARGOT code
¢ Performance comparison 2 e Mesh size: 323

Mesh size: 163
0.45 ART
04 Others Ax_

®Evaluation testbed ®Others 3
— 0.35 I I
>Cygnus supercomputer(a single node used in this study) > S0lving chemical reactions and the .. T q -
© D EORP
- radiative heating and/or cooling of eachpd: | a : —
mesh - o f
v Computation of a mesh highly independent £l .. of 5 _ _4;(_
from one another, which is why the GPU slowdown
implementation can accelerate their 04
execution o 02
% yr or \putational 5«' = : . eS,;l,‘. ' ARG OT methOd Open(h;l:cl.Zsjcg)reads Opegﬂ:::ﬁ:ﬁg;eads (gccz:.zfci:c]jzl.ﬂ.m (inte”C;l.J(I;). Q_:EZ;”_O) Ofnevnh:;iigoi-rgsl. ° Open(MP]Z th)reads OpezMP]Z thr;eads (CUDA impl. - CUDA impl.) OfenACCim?I.
. gcc4.8.5 intel18.0.0 gcc4.8.5-cudal1.0) (intel18.0.0-cudall1.0 nvhpc20.9
dware spelflcatlon »The larger the mesh size, the more y
ntel Xeon Gold 6126 x 2 UPI . . = ARGOT . . 3 L ARGOT .
Host. 192 GiB (16 GiB DhDR4-22€;66 =2 . noticeable the performance degradation — . Mesh size: 64 “oT Mesh size: 1283
emory X 6 chan. x , . PR 12 Others 120
o NVIDIA Tedla V100 (Ol f — of the CUDA impl. (this is because of —
Gen3 x16) x 4 e | used in this study | cydahostalloc) o "
i —
T @005y e it et ®ART method :H 3.
T — : & | - S E .
0S Cent0S 7.9 Hi »3Small mesh size: 73% ~ 76% of CUDA [. o Hp
Compler 5010 (rar OpenttE el e impl. Performance ‘. 1.00x i
cuoa CUDA 11.0.221 (for CUDA ‘etestie ftess | ~Large mesh size: almost same as CUDA better | 1.29x
G DA MG B A =| [z] [2] 3 impl. (1.1x better when 1283 mesh size) | - — — — 20 better |
Compiler I [E—

OpenMP 12 threads OpenMP 12 threads CUDA impl. CUDA impl. OpenACC impl. OpenMP 12 threads OpenMP 12 threads CUDA impl. CUDA impl. OpenACC impl.
“‘ C I ° | f t (gcc4.8.5) (intel18.0.0) (gcc4.8.5-cudal11.0) (intel18.0.0-cudal1.0) (nvhpc20.9) (gcc4.8.5) (intel18.0.0) (gcc4.8.5-cuda11.0) (intel18.0.0-cudal1.0) (nvhpc20.9)

®\\Vhat we did is...

»as a preliminary evaluation for the realization of GPU-FPGA integration with high usability, we implemented the ARGOT code by OpenACC and evaluated the
performance of OpenMP-based CPU implementation and CUDA-based GPU implementation

»we confirmed that...
v'For small mesh size: OpenACC-based implementation achieved up to 77% of the performance CUDA-based ARGOT code implementation
v'For large mesh size: OpenACC-based implementation achieved up to 1.29x better performance compared to CUDA-based ARGOT code implementation

®Next step is...

»to evaluate multi-node versioned OpenACC implementation’s performance by comparing to OpenMP and CUDA implementations
ACKNOWLEDGEMENT This work was supported in part by the "Next Generation High-Performance Computing Infrastructures and Applications R&D Program'' (Development of Computing Communication Unitied

Supercomputer in Next Generation) of MEXT. This research was also supported in part by the Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and JSPS
KAKENHI, Grant Number 21H04869. We also thank Dr. Naruhiko Tan of NVIDIA for his advice on OpenACC optimization.

