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< Introduction What we have to do first is...
®|nvestigating the performance change by converting to OpenACC

Motivation Make both devices work together »we implemented ARGOT code with OpenACC and evaluated its performance
" in OpenACC programming model by comparing with those of OpenMP-based CPU implementation and CUDA-
based GPU implementation

® ARGOT code: an astrophysics simulation code

»developed in Center for Computational Sciences, University of Tsukuba
»combining two types of radiative transfer

vARGOT method
- a radiative transfer from a spotlight (point source)

®Realizing a way to easily use GPU and FPGA by

OpenACC
»Why OpenACC?
v’high maintainability

v'high portability
— quite friendly to application developers!
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®\\Vhat we did is...

»as a preliminary evaluation for the realization of GPU-FPGA integration with high usability, we implemented the ARGOT code by OpenACC and evaluated the
performance of OpenMP-based CPU implementation and CUDA-based GPU implementation

»we confirmed that...
v'For small mesh size: OpenACC-based implementation achieved up to 77% of the performance CUDA-based ARGOT code implementation
v'For large mesh size: OpenACC-based implementation achieved up to 1.29x better performance compared to CUDA-based ARGOT code implementation

®Next step is...

»to evaluate multi-node versioned OpenACC implementation’s performance by comparing to OpenMP and CUDA implementations
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