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Bayesian Networks Log-Gamma Function Calculation

» Probabilistic graphical model that encodes conditional independence relations Each local score calculation requires log-gamma function of given value.
among random variables using DAG.

Lanczos Approximation

» Application in various fields (e.g. medical diagnosis, financial analysis, genetic » Calculate the log-gamma function numerically with High accuracy

hyvlogenetic analysis, gene sequence analysis, etc. . .
PHYIo8 Y515, 8 d Y ) » Consist of only the constants and elementary functions

Structure Learning — Ideal for FPGAs to calculate the log-gamma function

» Learning DAG structure of BN from data
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» However, optimal structure learning is NP-hard and time-consuming.

» Despite the Lanczos approximation, the floating-point log-gamma function
calculation module still consumes many DSP resources in FPGA:s.

» Therefore, each parallel calculation module shares the pipelined log-gamma
function calculation module to save DSP resources.

© -~ O = T
o O -~ o W

— The upper limit of parallelism breaks free from DSP resource constraints.

Evaluation

Environment
» Intel Xeon W-2265 / 64GB / Ubuntu 18.04 / Xilinx Alveo U50

» BN with 30 binary random variables
» Accelerator is designed in C/C++ using Vitis 2020.2

» SW: single-core software execution

Local Scores

» Structure learning is reduced to a combinatorial optimization that maximizes
the log marginal likelihood score of the entire graph.

» The entire graph score is decomposed into local scores.

s(D,G) = LocalScore(xy, (), D)
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» Calculating local scores in advance simplifies the evaluation of the entire graph. Available 870016 402016 1740032 1344 5940
» However, The time to calculate a huge number of local scores is critical. Usage °=1024 324129 16801 441186 213490
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Research Objective
Accelerate local score calculation for large BNs structure learning with

Performance Evaluation of the Accelerator

» HW accelerates the calculations, thus enabling too time-consuming
calculations for software (N/A: terminated after 18,000 s).

» Comparison of HWs proves that the performance improves as the FPGA
resources Increase.

» Domain-specific dataflow architecture using FPGAs
» Parallelization by utilizing FPGA resources
» Scalable implementation for FPGA clusters

Our Approach | | N m SW HW(P=1024) HW(P=2048)
Each local score calculation depends on the entire dataset. 5 130 059 1824 1667
It is impossible to store a vast dataset for each local score calculation module. 6 949 879 14 270 12 087
However, storing it in one place will cause memory contention. 1000 7 5930 838 03 195 84 612
— Dataflow architecture with FPGA g 510 549 163 556
Architecture 9 2378.568 2158.771
We place parallel calculation modules according to FPGA resources. 5 1268.540 7.552 5.010
The dataset is stored in one place and streamed to each module. 6 9175.792 60.080 39.712
Each module counts data supporting each target substructure concurrently. 10000 7 394.153 260.212
» High degree of data and pipeline parallelism with few memory resources 3 2166.152 1429.310
» Scalability : performance improves as FPGA resources increase 9 10104.604 6665.651
N: data size, m: number of parent variables.

Calculation Flow

1) Each count-up module identifies the target local score as a query. :
(1) P-m et 10Ca query. Conclusion and Future Work
(2) Iterate the following three steps for all combinations of parent variable values.
(2-a) Counts the data supporting each target substructure from the streaming data concurrently. Conclusion
2-b) Calculate the term for each local score in the calc-term pipeline based on counted numbers. : : : :
(2-b) . o pLine » Calculate local scores in parallel using dataflow architecture with FPGA.
(2-c) Add each term calculated in the calc-term pipeline to each partial sum. _ _ _ _
» Extract high parallelism with few memory resources by streaming the dataset.
(3) Return the calculated local scores as an answer. C | |
» Scalability : performance improves as FPGA resources increase
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