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What is a Coarse-Grained Reconfigurable Array?

e Array of tiles: Processing Elements (PE), Load/Store, Buffer, etc.
e Connected by programmable interconnect

® A loop kernel is compiled into a Data-Flow Graph then mapped
onto CGRA (Place & Route)

Background

e Limited scaling of current generation of von Neumann based CPU

v Inefficient hardware: Too much non compute related hardware
(branc pred., 000, etc.) relative to ALU

v Indirect data transfer between cores: LLC and shared memory
become bottleneck

v Non-DRAM friendly random memory access: cache miss is costly

e Our solution: Reconfigurable Data-driven Computing on CGRA
v Efficient hardware: can be reconfigured for each application
v Direct data transfer between ALU

v" DRAM friendly access pattern: data is streamed and can be
pipelined to hide latency

v" CGRA: Trade FPGA’s flexibility for more efficient operation and
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RIKEN CGRA oL
e Written in SystemVerilog
MUL +
e Targets Intel FPGA Platform
v' Our FPGA cluster uses Intel FPGA MUL +
e All internal connection is defined withAvalonST & MUL _+
AvalonMM,; allowing easier integration with:
v" Intel Platform Designer MUL + +
v" 3 party IP for tiles i _
v Hardened FPGA feature (network PHY, memory controller, MUL +
CPU core, PCle, etc) 1
e Target explorations: MUL ¥
v' Bypass/Torus/3D Wiring
: MUL +
v Heterogenous vs Homogenous tiles
v Composition
: MUL
v Type of tiles |
CPU - CGRA Interconnect Options
B1 B2c B2

e Internal state:

o
faster compilation & configuration v (A) Stateless (100% controlled by CPU) I I
. . . v (B) Has its own state (CPU may still control the operation) CPU Memory Host
e Recently CGRA is considered for HPC-scale Deep-Learning Accelerator Al Interconnect Controller Memory
v" However CGRA traditionally only targets smaller and lower power e Memory Access: | I
consumption embedded device. v (1) Depending on CPU’s LSU unit || PCle/
: : C CXL
v" What does it take for CGRA to compete in HPC market? v Has its own LSU unit ' Netwc{rk
n
v" Finding the best practice of designing CGRA for HPC as an > (2) Within CPU’s coherency domain N
. . " y ] \
extension of multicore CPU » Outside CPU’s coherency domain ‘\ hEN CCRA
O (3) Direct access to main memory \ C* Memory
O (4) In-direct access through PCleNvlink/Network/Driver (Usually has \\
: d
its own memory too) Augmente
_ Cache Coherency ~
G | With augmented cache coherency: B - CGRA
oais < (4p) Partial/one way coherency Memory
e Exploration of CGRA design space on HPC environment < (4f) Full coherency through address translation CPU Cache Coherency Domain
Additional consideration: virtual memory space/MMU
' ' CGRA
e Implementing a working prototype on our FPGA cluster N ing Factor | Scalabilty Level . e
connected to an HPC system y g y Limiting Factor Y
Al Part of CPU instruction pipeline Easiest Very Limited CPU Core LSU Chip Level
g | SEEE, eesEl; E‘S’Bp'ed' SneNEs ERAt Easier Limited CPU Core LSU Chip Level
CG RA Com iler Outside CPU Core complex, has own .
P B2 (U, @lree ey SesEss Complex Larger Host Memory BW Chip — Box Level
® FrofiSompile Opcii cod< to DataFlow Graiiuu B3 Completely separated, Indirect memory More Complex Much Larger Accelerator Memory BW Chip — Rack Level
v" LLVM Based access, can be added after design phase P 8 y P
e Back-end: Place and Route the DFG onto CGRA with specified constraints \
and criteria Dl om . . .
Preliminary result based on an older design with GHDL Simulator & DRAM SIM 3
v Genetic-Algorithm based optimization thorouputs in different data sizes(SIMD1, FIFO2, DDR4)
e Example: s
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Control Logic
r_config[447:0]
e Load/Store Tiles read and write data to and from memory then
stream it to its neighboring tiles
v Similar to DMA controller
v Use AvalonMM for memory interface
v Use AvalonST to talk to other tiles
e Address of the memory transaction is calculated based on the
configuration bitstream sent from the host CPU
e Target Explorations:
v DRAM Friendly Memory Access
v" Memory Coalescing
Processing Element Tile
i_inputl[0] —
i_inputl[1] — ‘>_<
S J %0 —
S PIEE- %
0 = %\
> =
[P_muxLen-1] £
D) -—
i_input2[0] S zl:l — 8 "'ch) > o_output
i_input2[1] = c>\|<
i = /
[P_muxLen-1] > s E
r_config[63:0]

® Processing Element Tiles stream data from selected two neighboring tiles,
calculate, then send the result to neighboring tiles

v" Use AvalonST interface to communicate with other tiles

e Operations are selected by the configuration bitstream sent by host CPU

v NOP, ADD, SUB, MUL, DIV, AND, XOR, OR, NOT, FADD, FSUB, FMUL
v' Pipelined

e Target Explorations:

v Heterogenous Tiles
v Buffer Memory
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