
In-situ analysis with OpenMP task for leveraging unused core
Tatsuya Akazawa

akazawa@cspp.cc.u-tokyo.ac.jp
The University of Tokyo
Kashiwa, Chiba, Japan

Toshihiro Hanawa
hanawa@cc.u-tokyo.ac.jp
The University of Tokyo
Kashiwa, Chiba, Japan

Yohei Miki
ymiki@cc.u-tokyo.ac.jp
The University of Tokyo
Kashiwa, Chiba, Japan

1 INTRODUCTION
In recent years, the number of physical cores of the processor in
HPC clusters has been increasing. However, the total performance
might be reduced if all the cores are used. For this reason, there are
cases where the number of cores used is intentionally limited to
maximize the CPU’s performance. The cores that are not being used
then are called "unused cores." We plan to leverage the unused cores
to support the main computation. Our goal is to create a framework
that allows unused cores to support computation. The framework
is expected to provide functions including auto-tuning dynamically
and in-situ analysis and visualization technology. In this study, we
aimed to demonstrate that OpenMP task pragma can be used to
manage efficiently the main computation and analysis processes
and reduce the execution time.

2 THE OPENMP TASK
The code to which we have applied parallelization is Gravitational
Oct-Tree code accelerated by HIerarchicaltime step Controlling
codecite (GOTHIC)[1]. It is designed in such a way that the main
computation, analysis, and output are processed sequentially. At
first, this code computes the N-body on the GPU, then transfers
the computation results from the GPU to the CPU. Next, analyze
and output the results on the CPU. Figure 1 (a) shows the main
computation and analysis flow of the gothic original.
We consider process the analysis in parallel because only one CPU
is used during the main computation. To realize the In-situ analysis,
we will use the OpenMP task pragma. it can be useful for paralleliz-
ing irregular algorithms such as pointer chasing. By using omp task,
the computation results of the previous iteration can be analyzed
in parallel with the main computation, which is expected to reduce
the overall execution time.

3 EXPERIMENT AND EVALUATION
Figure 1 (b) shows the image of the parallel execution with omp
task. The Core that was resting during the main computation on
the GPU is assigned to analysis.
We compared the execution time between the case of paralleliz-
ing the main computaion and analysis and the case of sequential
processing.

Table 1: Experiment Environment.

System Wisteria/BDEC-01 Aquarius
CPU Intel Xeon Platinum 8360Y
GPU NVIDIA A100

Compiler gcc-8.3.1

(a) Original (b) In-situ analysis

Figure 1: Image of parallel processing with omp task

For evaluation, we use the Wisteria/BDEC-01 system operated by
Information Technology Center, the University of Tokyo. Table 1
shows the specifications of the system. Figure 2 shows the process-

Figure 2: Experimental result

ing time per a loop. 1 is the sequential, 2 is the parallel execution,
i.e. in-situ analysis. The execution time of in-situ analysis was re-
duced to about 52% of the time per loop compared to the time of
the sequential processing.
However, if the time for the main computation and the analysis
differs greatly, the thread will wait longer. Therefore, it is necessary
to consider a wait method that does not overload the CPU.

4 CONCLUSION AND FUTUREWORK
In this study, we parallelized the main computation and analysis
using the OpenMP task pragma, and evaluated the execution time.
As the future work, we would like to study issues such as how to
wait for threads that do not overload the CPU.

REFERENCES
[1] Yohei Miki and Masayuki Uemura. 2017. GOTHIC: Gravitational oct-tree code

accelerated by hierarchical time step controlling. New Astronomy 52 (2017), 65–81.
https://doi.org/10.1016/j.newast.2016.10.007

https://orcid.org/0000-0002-2970-6037
https://orcid.org/0000-0001-9780-0220
https://doi.org/10.1016/j.newast.2016.10.007

	1 Introduction
	2 The OpenMP Task
	3 EXPERIMENT AND EVALUATION
	4 CONCLUSION AND FUTURE WORK
	References

