
Offloading Integer GMRES Method to Accelerators
Yijie Yu

yuyijie@g.ecc.u-tokyo.ac.jp
The University of Tokyo
Kashiwa, Chiba, Japan

Toshihiro Hanawa∗
hanawa@cc.u-tokyo.ac.jp
The University of Tokyo
Kashiwa, Chiba, Japan

1 INTRODUCTION
Modern computer supports many different precisions, like 64-bit
(double) and 32-bit (single). Higher precision is often used as a
simple guard against corruption from finite-precision round-off
error[1]. However, in many cases, computing tasks can be accom-
plished by using reduced precision (half or single). Over-allocation
of bits resources wastes power, bandwidth, storage, and FLOPS.The
transprecision is a solution to the above problem, which uses dif-
ferent precision to execute computing. In addition, as a kind of
reconfigurable hardware, FPGA accelerator provides the possibility
of higher performance computing which can optimize arithmetic
units and data types. We test numerical analysis algorithms like
int-GMRES in Host CPU, and offload the kernel to GPU and FPGA
in OpenCL and oneAPI to verify the results.

2 INT-GMRES ALGORITHM
Integer arithmetic is useful in the early stage of research and deploy-
ment for some computing devices, because floating-point arithmetic
are more complex and power consuming. The GMRES method used
as a standard solver for sparse unsymmetrical coefficient matrix.
And the refinement of int-GMRES is that each FP needs to be con-
verted into integer and fixed point number[2].

Listing 1: Algorithm for int-GMRES
1 Compute r0,v1//FP
2 For j=1,2,...,m
3 Compute wj+1 = A*vj//INT
4 For i = 1,...,j
5 hi,j = (wj+1,vi)//INT
6 wj+1 = wj+1-hi,j*vi//INT
7 Endfor
8 hi,j = ||wj +1||// INT
9 vj+1 = wj+1/hj+1,j//INT
10 For i = 1,...,j-1
11 Compute Heisenberg matrix
12 Endfor
13 Compute cj,sj,gj//INT
14 Endfor
15 Compute x,b

3 ACCELERATOR OFFLOADING
In order to achieve acceleration on hardware, offloading the work-
load into accelerator is the key. The C/C++ code needs to be divided
into host and device code. Host code is executed by the CPU(s) and
controls kernel to available devices. Devices correspond to accelera-
tors execute the kernel code. OpenCL is suitable for heterogeneous
platforms with strong portability. The DPC++ compiler based on

SYCL is a toolkit of oneAPI and supports GPU, CPU, and FPGA.
Compared with OpenCL, it supports single source program.

4 EVALUATION
4.1 Host CPU Numerical Experiment
We evaluated the convergence of the relative residual norm of int-
GMRES solver in comparison with FP arithmetic in OBCX system.
In the early stage of int-GMRES design, long long int type is used
for the accuracy. However, it is found that long int also ensures
the accuracy. Based on the restart characteristic of int-GMRES,
we designed three experiments showed in figure 1, in which the
number of iterations is 50, 30 and 20. The third experiment demon-
strates the computing time of integer is better than double, and the
performance of modified long int is better than long long int type.

Figure 1: Computation time of three iteration types

4.2 Porting Kernel Code Experiment
Int-GMRES is the kernel code executed in the accelerator. The sim-
plified version of the int-algorithm is shown in Listing 1. The first
part of experiment is to execute computing in the GPU in OpenCL
for testing, and the other uses DPC++ to offload and compile the
kernel on FPGA (Intel Stratix 10). DPC++ compiler supports shift
left and right operators which can achieve integer arithmetic.

5 CONCLUSION AND FUTUREWORK
The numerical results demonstrated that lower precision ensures
the same convergence performance in int-GMRES.In the future,
improving transprecision algorithms to reduce unnecessary com-
putation and developing engine that allow simulations to arbitrary
and multiple length precision depending on the tasks are attractive.

REFERENCES
[1] JA Hittinger, PG Lindstrom, H Bhatia, PT Bremer, DM Copeland, KK Chand, AL

Fox, GS Lloyd, H Menon, GD Morrison, et al. 2019. Variable Precision Comput-
ing. Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[2] Takeshi Iwashita, Kengo Suzuki, and Takeshi Fukaya. 2020. An Integer Arithmetic-
Based Sparse Linear Solver Using a GMRES Method and Iterative Refinement.
In 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA). IEEE, 1–8.

https://orcid.org/

	1 Introduction
	2 int-GMRES Algorithm
	3 accelerator offloading
	4 evaluation
	4.1 Host CPU Numerical Experiment
	4.2 Porting Kernel Code Experiment

	5 CONCLUSION AND FUTURE WORK
	References

