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1 INTRODUCTION

Parallel computation with a very large number of cores reaches
a saturation point in the spatial dimension due to the latency of
supercomputers. With the increase of core numbers, the commu-
nication and synchronization costs will gradually dominants the
computation cost. This problem limits the parallel efficiency of
time-dependent problems. Parallel-in-time methods parallelize a
problem in the time dimension to extract further parallel efficiency..
So far parallel-in-time (PinT) methods such as parareal[5] and multi-
grid reduction-in-time (MGRIT)[4] are shown to provide successful
converged results for small problems.

However, PinT methods have yet to be applied to large-scale
problems, and it still requires a huge amount of cores to achieve
reasonable computation acceleration. Falgout et al. (2014)[4] shows
that it requires at least 256 cores to achieve faster computation
time than spatial parallelization of an implicit time-stepping for
Poisson equation. Christopher et al. (2020)[2] shows that it requires
at least 1024 cores to achieve faster computation time of an explicit
time-stepping for a Couette flow problem. Moreover, very few
PinT works have been conducted for explicit schemes since explicit
schemes are very fast and highly scalable for spatial parallelization.

2 CASCADIC PARAREAL

We propose a cascadic parareal method, which is a PinT method
optimized for explicit schemes. The cascadic parareal method opti-
mized the parareal method to work with explicit schemes and by
the number of parallel processes in the time domain. The whole
time interval is divided into P; time subintervals, within where fine
solvers of the parareal method is solved in parallel. Coarse solvers
with larger time steps solve on coarse space grids to prevent vio-
lating the CFL-condition[3]. We further construct multiple levels
with different time steps and apply solving process similar to the
cascadic multigrid method[1], as described in Algorithm 1.

Algorithm 1: Cascadic Parareal

Sequential solve on the coarsest level L. u, = ¥* (Ru}‘”)

for level [ = L-1to 1do
Take initial values from level I-1.

for iterate until residual tolerance do
On current core:

Solve on the current level in parallel uy = P2x (uf)

for Core p =1toP do

Solve on the coarsest level
uﬁll = P\IJX(Ruf“) + cbZX(uf) - P\PX(Ruf)
Update values to level 1 with prolongation
end

end
end

Kengo Nakajima
The University of Tokyo
Japan

3 PINT FOR ADVECTION EQUATION
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PinT methods converge slower on hyperbolic equations, and there-

fore advection equation has been a common numerical experiment
for PinT methods. We show in Figure 1a that with more than 64
cores, cascadic parareal could achieve faster execution time than
spatial parallelization.

4 PINT FOR COMPRESSIBLE SUBSONIC FLOW
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For a larger example, we simulate the compressible flow around a

cylinder. We solve from an initial velocity of 0.3 Mach (subsonic
flow) to a steady state without perturbation. Figure 1b shows that
cascadic parareal achieve faster execution time than spatial paral-
lelization with more than 64 cores.
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(a) Parallel-in-space and time (b) Parallel-in-space and time
(P;) compare to spatial paral-(P;) compare to spatial par-
lelization for adevction equa-allelization for compressible
tion. The problem size Ny X flow simulation. The problem
N; = 4097 x 8192 size N, X N; = 32000 X 100000.

Figure 1: Parallel performance for cascadic parareal.

5 SUPERSONIC FLOW

Cascadic parareal coarsens the spatial grid for coarse solvers to
satisfy the CFL-condition. Thus, it has trouble converging for discon-
tinuous problems such as a shock wave simulation. We are working
on applying adaptive mesh refinement with cascadic parareal for
supersonic flow.
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