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1 INTRODUCTION
Parallel computation with a very large number of cores reaches

a saturation point in the spatial dimension due to the latency of

supercomputers. With the increase of core numbers, the commu-

nication and synchronization costs will gradually dominants the

computation cost. This problem limits the parallel efficiency of

time-dependent problems. Parallel-in-time methods parallelize a

problem in the time dimension to extract further parallel efficiency..

So far parallel-in-time (PinT) methods such as parareal[5] andmulti-

grid reduction-in-time (MGRIT)[4] are shown to provide successful

converged results for small problems.

However, PinT methods have yet to be applied to large-scale

problems, and it still requires a huge amount of cores to achieve

reasonable computation acceleration. Falgout et al. (2014)[4] shows

that it requires at least 256 cores to achieve faster computation

time than spatial parallelization of an implicit time-stepping for

Poisson equation. Christopher et al. (2020)[2] shows that it requires

at least 1024 cores to achieve faster computation time of an explicit

time-stepping for a Couette flow problem. Moreover, very few

PinT works have been conducted for explicit schemes since explicit

schemes are very fast and highly scalable for spatial parallelization.

2 CASCADIC PARAREAL
We propose a cascadic parareal method, which is a PinT method

optimized for explicit schemes. The cascadic parareal method opti-

mized the parareal method to work with explicit schemes and by

the number of parallel processes in the time domain. The whole

time interval is divided into 𝑃𝑡 time subintervals, within where fine

solvers of the parareal method is solved in parallel. Coarse solvers

with larger time steps solve on coarse space grids to prevent vio-

lating the CFL-condition[3]. We further construct multiple levels

with different time steps and apply solving process similar to the

cascadic multigrid method[1], as described in Algorithm 1.

Algorithm 1: Cascadic Parareal

Sequential solve on the coarsest level L. 𝑢𝑐 = Ψ𝑥 (𝑅𝑢𝑘+1
𝑗

)
for level l = L-1 to 1 do

Take initial values from level l-1.

for iterate until residual tolerance do
On current core:

Solve on the current level in parallel 𝑢𝑓 = Φ2𝑥 (𝑢𝑘
𝑗
).

for Core p = 1 to P do
Solve on the coarsest level

𝑢𝑘+1
𝑗+1 = 𝑃Ψ𝑥 (𝑅𝑢𝑘+1

𝑗
) + Φ2𝑥 (𝑢𝑘

𝑗
) − 𝑃Ψ𝑥 (𝑅𝑢𝑘

𝑗
)

Update values to level l with prolongation

end
end

end

3 PINT FOR ADVECTION EQUATION
𝜕𝑢

𝜕𝑡
= −𝑐 𝜕𝑢

𝜕𝑥
PinT methods converge slower on hyperbolic equations, and there-

fore advection equation has been a common numerical experiment

for PinT methods. We show in Figure 1a that with more than 64

cores, cascadic parareal could achieve faster execution time than

spatial parallelization.

4 PINT FOR COMPRESSIBLE SUBSONIC FLOW
𝜕𝑈

𝜕𝑡
+ ▽ · ®𝐹 = ▽ · ®𝑅

For a larger example, we simulate the compressible flow around a

cylinder. We solve from an initial velocity of 0.3 Mach (subsonic

flow) to a steady state without perturbation. Figure 1b shows that

cascadic parareal achieve faster execution time than spatial paral-

lelization with more than 64 cores.

(a) Parallel-in-space and time
(𝑃𝑡 ) compare to spatial paral-
lelization for adevction equa-
tion. The problem size 𝑁𝑥 ×
𝑁𝑡 = 4097 × 8192

(b) Parallel-in-space and time
(𝑃𝑡 ) compare to spatial par-
allelization for compressible
flow simulation. The problem
size 𝑁𝑥 × 𝑁𝑡 = 32000 × 100000.

Figure 1: Parallel performance for cascadic parareal.

5 SUPERSONIC FLOW
Cascadic parareal coarsens the spatial grid for coarse solvers to

satisfy the CFL-condition. Thus, it has trouble converging for discon-

tinuous problems such as a shock wave simulation. We are working

on applying adaptive mesh refinement with cascadic parareal for

supersonic flow.
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