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Introduction

Several parallel-in-time (PinT) methods such as
parareal|3] and multigrid-in-time reduction|1, 2|
was proven to be successtul on various applications
using both implicit and explicit schemes.

This work propose a parallel-in-time method
that minimizes the computation time for explicit
time-marching schemes.

Challenges

e The Courant-Friedrichs-Lewy condition (CFL
condition) is a necessary condition for

stability while solving time dependent
problems with explicit schemes. This causes
coarse operations in PinT methods to fail
when time step is too large.
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where u is velocity field, Az is length interval
and At is time step.

e Parallel-in-time methods are less eflicient
compare to spatial parallelization, especially
for explicit schemes.

Parallel-in-time methods works poorly on
hyperbolic equations and and non-linear

flows such as shock wave simulation.

Cascadic Parareal

The whole time line is divided into N segments,

which is the number of available cores. Each core
only solves in the assigned time segment.
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The proposed method constructs multiple coarse
layers, each coarser from the other. In each layer,
solve the problem with an explicit time-marching
scheme F with different time step.

The difference of the fine and coarse results are
then updated sequentially by an explicit scheme on
the coarse grid.

' = ]-"(yi, rAt) + f(yi_l, At) — F(yi_l, rAt)

o' is the result at first time step of core .

Solve the previous step iteratively using layer
L — 1 to 1 as fine grid until convergence.

In order to prevent violating the CFL condi-
tion, we coarsen the x-grid and the time grid at the
same time.
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o The four coupled equations are solved by finite
1D Advection

volume method with Lax-Wendroff scheme
(explicit). Restriction and Prolongation between
We consider the following advection example with  fine and coarse layers are calculated by bicubic

constant velocity and sine wave initial condition. interpolation.
ot oa A / (_> @+ [ (vF-v R)do=o
R . S oy \ Ot I
with initial condition: TN N N 1 L
u(z,0) = sin*(7z) <_8t> =70 / (F— R)-ndS
’ Figure 2:Initial condition N N JoQy

Spatial restriction is defined as follows:

Y = Yo Result (CFD)

Spatial prolongation is defined as adding the aver-

age residual of the neighbor points: The experiment constructs a Pin'l' method with

Yo, = Yo A (Yoi—1 —wi) + (Yai41 — Yiv1)
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4 layers. The Pin'l' execution time is compared

to the execution of pure spaital parallelization.
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in-time method. In each layer, Lax-Wendroft

scheme (explicit) is applied. The problem size is

Mo, of cores

4096 in space and 8192 in time dimension. This
experiment is tested on Oakbridge-CX cluster

Figure 5:Comparison of execution time using only spatial paralleliza-

tion and parallel-in-space/time.

at the University of Tokyo.
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Conclusion

\ This work propose a parallel-in-time method for ex-

=y plicit schemes. This work shows that parallelizing
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in both space and time with our method is more

eficient than pure spatial computation, without re-

Figure 3:Execution time using parallel-in-space and parallel-in-time ..
quiring extremely large number of processors.

(proposed method). The number in the parentheses is the number

of processors in time dimension. FUt ure Work

We are trying to apply Cascadic Parareal onto su-
2D C FD personic flow simulation with adaptive mesh refine-

ment. To solve the convergence problem with shock

We solve the following Navier-Stokes Equations to =~ WaVes.
simulate a compressible fluid flow.
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There are 5 parameters: density p, x-velocity u.
y-velocity v, energy E, and pressure p. Pressure p

can be derived from the following equation.

p=(y—1)%(E~p(u)

Figure 6:Apply adaptive mesh refinement for shock wave simulations can

improve the computational accuracy.
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Figure 4:We simulate air flow around a cylinder with a speed of 0.3 Mach.



