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Introduction
Several parallel-in-time (PinT) methods such as
parareal[3] and multigrid-in-time reduction[1, 2]
was proven to be successful on various applications
using both implicit and explicit schemes.

This work propose a parallel-in-time method
that minimizes the computation time for explicit
time-marching schemes.

Challenges
• The Courant-Friedrichs-Lewy condition (CFL

condition) is a necessary condition for
stability while solving time dependent
problems with explicit schemes. This causes
coarse operations in PinT methods to fail
when time step is too large.

C = u∆t

∆x
≤ 1

where u is velocity field, ∆x is length interval
and ∆t is time step.

• Parallel-in-time methods are less efficient
compare to spatial parallelization, especially
for explicit schemes.

• Parallel-in-time methods works poorly on
hyperbolic equations and and non-linear
flows such as shock wave simulation.

Cascadic Parareal
The whole time line is divided into N segments,
which is the number of available cores. Each core
only solves in the assigned time segment.

t
core 0 1 2 3

The proposed method constructs multiple coarse
layers, each coarser from the other. In each layer,
solve the problem with an explicit time-marching
scheme F with different time step.

The difference of the fine and coarse results are
then updated sequentially by an explicit scheme on
the coarse grid.
yi+1 = F(yi, r∆t) + F(yi−1, ∆t) − F(yi−1, r∆t)

yi is the result at first time step of core i.
Solve the previous step iteratively using layer

L − 1 to 1 as fine grid until convergence.
In order to prevent violating the CFL condi-

tion, we coarsen the x-grid and the time grid at the
same time.
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Figure 1:Overview graph of our method

1D Advection
We consider the following advection example with
constant velocity and sine wave initial condition.

∂u

∂t
= −∂u

∂x

with initial condition:
u(x, 0) = sin4(πx) Figure 2:Initial condition

Spatial restriction is defined as follows:
yi = Y2i−1

Spatial prolongation is defined as adding the aver-
age residual of the neighbor points:

Y2i = Y2i + (Y2i−1 − yi) + (Y2i+1 − yi+1)
2

Result (Advection)
This experiment construct a 7 layer parallel-
in-time method. In each layer, Lax-Wendroff
scheme (explicit) is applied. The problem size is
4096 in space and 8192 in time dimension. This
experiment is tested on Oakbridge-CX cluster
at the University of Tokyo.

Figure 3:Execution time using parallel-in-space and parallel-in-time

(proposed method). The number in the parentheses is the number

of processors in time dimension.

2D CFD
We solve the following Navier-Stokes Equations to
simulate a compressible fluid flow.

∂ρ
∂t + ▽ · (ρu⃗i + ρvj⃗) = 0
∂(ρu)

∂t + ▽ · ((ρu2 + p)⃗i + ρuvj⃗) = ▽ · (τxx⃗i + τxy⃗j)
∂(ρv)

∂t + ▽ · (ρuv⃗i + (ρv2 + p)⃗j) = ▽ · (τxy⃗i + τyy⃗j)
∂E

∂t
+ ▽ · ((Eu + pu)⃗i + (Ev + pv)⃗j) =

▽ ·((uτxx + vτxy − qx)⃗i + (uτxy + vτyy − qy)⃗j)
There are 5 parameters: density ρ, x-velocity u,
y-velocity v, energy E, and pressure p. Pressure p

can be derived from the following equation.

p = (γ − 1) ∗ (E − 1
2
ρ(u2))

Figure 4:We simulate air flow around a cylinder with a speed of 0.3 Mach.

The four coupled equations are solved by finite
volume method with Lax-Wendroff scheme
(explicit). Restriction and Prolongation between
fine and coarse layers are calculated by bicubic
interpolation.∫

ΩN

(
∂U

∂t

)
dΩ +

∫
ΩN

(
▽ · F⃗ − ▽ · R⃗

)
dΩ = 0(

∂U

∂t

)
N

= − 1
ΩN

∫
∂ΩN

(F⃗ − R⃗) · n̂dS

Result (CFD)
The experiment constructs a PinT method with
4 layers. The PinT execution time is compared
to the execution of pure spaital parallelization.

Figure 5:Comparison of execution time using only spatial paralleliza-

tion and parallel-in-space/time.

Conclusion

This work propose a parallel-in-time method for ex-
plicit schemes. This work shows that parallelizing
in both space and time with our method is more
efficient than pure spatial computation, without re-
quiring extremely large number of processors.

Future Work

We are trying to apply Cascadic Parareal onto su-
personic flow simulation with adaptive mesh refine-
ment. To solve the convergence problem with shock
waves.

Figure 6:Apply adaptive mesh refinement for shock wave simulations can

improve the computational accuracy.
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