THINK GREEN! Energy Efficient Cloud for HPC

THINK GREEN, GO GREEN!

What is Energy Efficient Cloud ?

Cloud infrastructure with emphasis on optimizing energy utilization. It is study and practice of designing, manufacturing and using digital devices in Cloud in a way that reduces energy consumption, thereby reducing impact on the environment.

consume high energy leading to Increasing carbon emissions and

Advantages of Energy Efficient Cloud

- > Cost-effective (pays over time)
- Reduced carbon emissions
- E-waste management
- Leads to centralization of information activities

Disadvantages of Energy Efficient Cloud

- High start-up cost
- Maintenance
- > Adapting to frequent changes in technology may not be easy
- Not readily available at times

Author: Madhu Thorat, IBM

Rene ✓ Use prod resou hydro ✓ Use Volta powe

Effici

✓ Tw to we VUse redu by aiı

Monitoring/Metering Tools to measure, monitor and reduce cloud carbon emissions. Open-source tools like Cloud Carbon Footprint can be used.

University of Dakar (UCAD), Senegal followed several approaches > Workload Diversification - Improved hardware utilization, to reduce power use. > Usage of Solar PV Array -Integration of solar charge controller and batteries > Usage of low power CPUs and servers.

Tabl Ener Cent Curre

Approaches to Optimize Energy Utilization

ewable Energy and Power Consumption se renewable energy duced from natural purces such as wind, ropower, or solar. se of methods like Dynamic age Scaling Frequency (DVSF) to reduce ver consumption.	 A Energy Efficient ✓ Use of EN storage ed Intel etc. ✓ Use of storage when possible
cient Cooling system weaking cooling system in response weather change. se of efficient methods to uce the waste generated irflow.	Server Virtu Workloads Virtualizat to reduce fo physical serv Workload is allocated to cost to opera

Case Study: UCAD Energy Efficient Data Centre Approach

le showing 94 % less energy consumption with Energy Efficient Approaches								
	Switch Gear	UPS	PDU	IT Gear	Zone AC			
rgy Efficient Data tre	0.05	0.08	0.05	6	0.2	0.98 KW		
rent Data Centre	0.1	0.5	0.9	9.8	4.5	15.7 KW		

References:

[1].<u>https://ijesc.org/upload/7cdf6f6917828848f439dc14271e22a2.Advancing%20Towards%</u> 20a%20Better%20Future%20Green%20Cloud%20Computing.pdf [2]. <u>https://www.ibm.com/ibm/environment/products/energystar.shtml</u>

cient Processors and Storage NERGY STAR certified processors and equipment from vendors like IBM,

orage devices like Os, Tape storage ble.

ualization and Scheduling

ition of servers ootprint of rvers.

across servers

to a server as a function of their rate.