
This work used computational resources TSUBAME3.0 supercomputer provided 
by Tokyo Institute of Technology through the HPCI System Research Project. 
The experiments were also conducted using the JAXA supercomputer JSS3.

AcknowledgementsAcknowledgements

 We propose a technique using one-sided communication for exchanging 
information on the number of particles among processes in the MPS 
method using the bucket.

 We made and ran a test program modelling the particle information 
exchange.

 Compared to the naïve implementation, the proposed technique's 
communication time (median) was reduced by a factor of 1/3.63 for six 
nodes in 36 processes and by a factor of 1/4.38 for nine nodes in 72 
processes.

 In future, we will verify the generality of the proposed method.
 Using a larger number of processes or system with different network 

topologies.
 Other domain decomposition methods.

ConclusionConclusion

 The data exchange was completed in shorter times with MPI_Put 
compared to MPI_Alltoall when comparing median values.

 The median time was reduced to 1/3.63 for six nodes with 36 processes.
1/4.38 for nine nodes with 72 processes.

 Latency (rather than throughput) determines performance.
 The size of data to be sent and received is 4 bytes x (# of processes).

Result: Data communication times

Native implementation (MPI_Alltoall) at 36 processes. Native implementation (MPI_Put) at 36 processes.

Native implementation (MPI_Alltoall) at 72 processes. Native implementation (MPI_Put) at 72 processes.

Test program comparing collective and one-
sided communication

 This test program compares and 
evaluates the time required for 
MPI communication concerning 
the proposed technique.

1. The naïve implementation uses 
MPI_Alltoall.

2. The proposed implementation 
uses MPI_Put.

 The test data is extracted from 
the particle information 
exchange in original program.

Test program modelling the particle information exchange

Evaluation and resultEvaluation and result

Passive target

 Source only synchronise.

 The section is enclosed by the 

MPI_Win_lock and 

MPI_Win_unlock where the sender 

can access.

 It is inefficient when the 

communication destination 

changes frequently.

 Both source and destination 

processes synchronise.

 The section is enclosed by the 

MPI_Win_fence where 

communication is possible.

 It is effective when the destination 

changes frequently or when there 

are many destinations.

Active target

 The naïve implementation employs collective communication even if there 
is no particle to move. (all-to-all is used)

 One-sided communication can reduce synchronous waiting and 
intermediate buffer data copying compared to one-to-one or collective 
communication.

One-sided communication instead of all-to-all communication

 Particle information exchange happens only 
between neighbour buckets.

 The particles only move from one process 
to adjacent processes.

 As illustrated in figure blow, the number of 
processes adjacent to a process is smaller 
than the number of all processes when the 
computational domain is decomposed.

A physical background of particle movement

Statistic of the number of processes 
to be communicated with.

The increase in the number 

of adjacent processes with 

the total number of 

processes is slower than the 

increase in the total number 

of processes ?

Proposed techniqueProposed technique

An optimization of particle information exchange 

using one-sided communication for the MPS method
Aoto Abe, Kazumi Kayajima, Dai Wada and Takaaki Miyajima

Department of Computer Science, School of Science and Technology, Meiji University, Japan

e-mail:takaaki.miyajima@cs.meiji.ac.jp

We focused here.
Step 2 : Transfer actual particle data.

Step 1 : Exchange information on the number of 

particles to be transferred from where to where.

Communication steps of particle information exchange

Inter domain communication with MPI
 In the distributed-memory system, the 

computational domain is divided into 
subdomains consisting of multiple buckets 

 Each subdomain is assigned to each MPI 
process.

 Particle information are needed to 
communicate for…

1. The particles may be moved to another 
MPI sub-region.

2. The particles required for neighbour-
particle search may exist in another node.

Each different 

coloured area 

is assigned to 

a different MPI 

process.

 Dynamic domain decomposition and load 
balancing are mandatory for large-scale 
simulation of the MPS method.

 The computational domain is divided into 
small lattices called “buckets”.

 The number of particles in each bucket are 
different.

Dynamic domain decomposition

BackgroundBackground

 Moving Particle Simulation (MPS) method is one of the computational 
methods for simulating fluid behaviour, classified as a particle-based 
method.

 The motion of each particle is calculated through interactions with the 
neighbour-particles.

Moving Particle Simulation method

Active target in One-sided communication


