
Using lossy compression for interactive analysis over network
Rei Aoyagi

Graduate School of Information Sciences, Tohoku
University

Sendai, Miyagi, Japan

Keichi Takahashi
Cyberscience Center, Tohoku University

Sendai, Miyagi, Japan

Yoichi Shimomura
Cyberscience Center, Tohoku University

Sendai, Miyagi, Japan

Hiroyuki Takizawa
Cyberscience Center, Tohoku University

Sendai, Miyagi, Japan

1 INTRODUCTION
Today’s scientific simulations require a massive amount of comput-
ing resources. Thus, most of scientific simulations are executed on
high performance computing (HPC) systems hosted by HPC centers.
To gain scientific insights, researchers conduct post-processing on
the simulation results. A common way to carry out post-processing
is to run an interactive data analysis tool such as Jupyter Notebook
on the HPC system and retrieve the post-processed results. In cer-
tain scenarios, transferring the simulation results directly from the
center becomes essential. This is especially relevant when utilizing
specialized hardware or proprietary software for data analysis. In
such cases, a portion of the data can be streamed over the network.
However, maintaining interactivity presents two challenges: (1)
limited network bandwidth and (2) network latency.

Dong et al. proposed a data staging approach that automatically
moves data from HDDs to SSDs to accelerate post-processing [2].
They assumed a simple access pattern that sequentially scans the
elements of an array one by one. Since the address to be accessed
next can be predicted, they employed prefetching. The prefetched
elements in SSDs were replaced by first-in first-out order. However,
the access pattern in practice is not as predictable as they assumed.
Furthermore, they did not discuss staging over the network.

2 PROPOSAL
We propose middleware to support interactive array analysis over
network. By using error-bounded lossy compression, we increase
the effective network bandwidth. In addition, by using multi-level
caching, we hide the network latency. The cache hit ratio is en-
hanced by prefetching mechanisms.

The overall design of the middleware is illustrated in Fig. 1. In our
proposal, data is transferred from server to client in the following
four steps: (1) Reading a block from storage, (2) compressing the
block, (3) transferring the compressed block over the network,
and (4) decompressing the block. Step (1) and (2) are conducted
on the server, while step (3) and (4) are conducted on the client.
We introduce L1 to L4 cache at each step of the transfer to take
advantage of access locality. Furthermore, we introduce prefetchers
at each cache to improve the cache hit ratio.

Since the access pattern of interactive analysis on a multidimen-
sional array usually exhibits spatial locality, we propose a cache
replacement and prefetching policy as follows. The prefetcher at
each cache level keeps fetching the blocks around the last accessed
block until the cache becomes full. Each cache evicts blocks located
farther than a certain distance from the last accessed block.

Figure 1: Overview of the proposed middleware

Table 1: Average latency of 100 requests in ms

TileDB Enabled cache levels

No cache L1 L2 L3 L4 L2+L4

697 518 496 302 478 494 286

3 EVALUATION
We implement our middleware usingMGARD [1] for lossy compres-
sion, HDF5 for array management in storage and Python’s standard
library for key-value store. The server and client communicate over
HTTP. The relative error tolerance for the compression was set to
0.1. We compared our proposal with TileDB [3] by measuring the
average latency for 100 requests. Each request retrieves a 64 MiB
three-dimensional block. The L1, L2 and L3 cache capacities were
set to 512 MiB and L4 cache capacity was set to 1024 MiB.

Table 1 shows the evaluation results. By comparing TileDB with
No Cache, we can see that compression reduces the latency. By
comparing No Cache with L4 cache we can see prefetching data
from Storage reduces the latency. L1 cache also reduces the latency
but not as much as L2 cache because L2 cache holds compressed
blocks while L1 cache holds eight decompressed blocks, which is
not large enough to improve the cache hit ratio.

REFERENCES
[1] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. 2019. Multilevel

Techniques for Compression and Reduction of Scientific Data—The Multivariate
Case. SIAM Journal on Scientific Computing 41, 2 (2019), A1278–A1303.

[2] Bin Dong, Teng Wang, Houjun Tang, Quincey Koziol, Kesheng Wu, and Suren
Byna. 2018. ARCHIE: Data Analysis Acceleration with Array Caching in Hierar-
chical Storage. In 2018 IEEE International Conference on Big Data. 211–220.

[3] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson. 2016.
The TileDB Array Data Storage Manager. 10, 4 (Nov. 2016), 349–360.


	1 Introduction
	2 Proposal
	3 Evaluation
	References

