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ABSTRACT

| Thls paper proposes a conceptual framework of CCTV-video contextualization machines and implements its concrete system by developing a video-object detection deep-learning model based on YOLO neural network architecture [2][3]. The primary §
. functionality of the proposed framework is for detecting active contextual clues, like objects, motions, and physical environs, on every CCTV-video frame and codifying the detected clues [4] into a new formation of structured code-format named as COME-
Code\footnote{N'ote that the COME-Code is an abbreviation for contextual objects, motions, and environs of the classified active contextual clues.}. In other words, the detected active contextual clues are codified into the textual forms of objects, motions,
_ and environs with their properties, and structured by the markup-styled formats of the systematic COME-Code scheme. Consequently, through the proposed CCTV-video contextualization machines, we can initiate not only a new era of CCTV-surveillance
Blgdata achieves and their engineering disciplines, but also a new paradigm of CCTV-driven crime-prevention services that are detecting, predicting, and preventing criminal situations and behaviors [1][5], but also providing intelligence-led policing and
predlctlve patrol scheduling operations in real-time. Finally, we verify the feasibility and functional correctness of the proposed framework by developing a CCTV-video contextualization system that is able to detect video-objects of the active contextual
video frame under the technological support of the YOLO object detection deep learning models and produce the JSON-formatted COME-Code datasets corresponding to the object-based active contextual clues on the CCTV-video
~ frames Addltlonally, as one of the future works, we will develop a CCTV-video retrieval system based upon the deep learning driven CCTV-video contextualization machines proposed in this paper.
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|' The essential component of the proposed framework is the CCTV-video contextualization machine supported by the novel

~ and innovative concept of the CCTV-video contextual clue detection approaches based upon the deep neural network
n'models. The functional components of the proposed machine are as follows: first, the CCTV-video manager is identifying

‘t ~ video-frames from the input video clippings and files, second, the YOLO video-object detector is detecting YOLO-objects on
each of the CCTV-video-frames, and third, the transformer is contextualizing the detected YOLO-objects and their properties

" into the context-objects represented in a textual formation of XML-schema and JSON formats. Finally, all the contextualized
CCTV-V|deos YOLO-objects are transferred and stored on a cloud-based archive under the name of the active video-

ftt‘j:,,' .contexts bigdata. '

s | 1.1 YOLO-Objects and Properties. The machine is fundamentally based upon the real-time YOLO video-object detection
qu”" framework [2][3]. So far, a series of the YOLO systems has been spawned from the framework, and these systems are well
known as the fastest video-object detectors that detect, in real time, 80 different categories (COCO Classes Dataset) of
”{,‘f‘?,.,. video-objects on every video-frame. The authors’ research group has successfully developed a couple of additional deep
W neural network models so as to detect such properties that are the supplementary characteristics of a corresponding
" detected object. Consequently, the functional goal of the proposed system is to contextualize every CCTV-video frame by
- detecting the contextual clues (which is called as YOLO-objects, in particular) with their innate properties as well as their
supplementary characteristics and transforming them into a textual formation of XML schema format including JSON format.

\«3%‘ 1.2 COME-Code: Contextual Clues in the Standardized Data Format. The eventual output of the CCTV-video-object
’1‘»«; _contextualization machine is a contextual clue dataset of a corresponding CCTV-video clip, each of which is coded as
el 'COME-Code in an XML schema structure. The COME-Code is for formatting the detected video-objects into the

( (q N
‘3 "" ii correspondlng contextualized video-objects on all the video-frames of the CCTV-video clippings. The functional components

¥ AN
"j},; ... of the proposed system produce the COME-code bigdataset contextualized from a file of CCTV-video streamings in realtime,
{ ;‘(‘ ‘and the podes are formed with the data-schema of the meta-models, such as the deep learning model, video content model,
..‘7‘13. V|deo context model, and crime prevention model. Note that it is necessary to differentiate a logical group of video- frames
A5 . from a physical group of video-frames in a way of fragmenting the identified video-frames out of the input CCTV-video
“,'J"“z" - streaming file. The physical group of video-frames is called as Video-Fragments, while the logical group of video-frames is
203 4 'called as Video-Clippings. These terminologies of video-fragments and video-clippings are usefully applied as the detection
% ~ range- -units of the video-objects’ behaviors and situations. At last, all the video-objects and their properties are detected on
each of the video-frames is contextualized, formatted, and stored in a COME-code formatted bigdataset. The COME-code

i t?ﬁ
.L..f.,‘
blgdataset can be eventually transformed into any type of the XSD format, JSON format, and others.
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2 Concrete Framework and System

The essential functionality of the CCTV-video object contextualization system is concretized with two functions: detection and  {&¢
contextualization. The former is to detect objects on each video-frame of the input CCTV-video clipping file, and the latter is

to contextualize the detected objects and their properties in a formation of the JSV format presented in the previous
subsection. More specifically, the detection function is supported by the YOLO system, while the contextualization function is = § )
implemented from scratch by the authors’ research group, for themselves. In other words, the video-object contextualization S
system is realized by integrating the YOLO's detection functionality onto the contextualization functionality, as shown in the &¢
conceptual and functional framework of Fig. 2. |

As stated in the previous subsection, the YOLO system can detect the 80 different categories of video-objects in a
unified fashion of real-time. The primary principle of our approach is to make the best use of the YOLO'’s detection ability.
The concrete framework illustrated in Fig. 2 starts from a CCTV equipment capturing a series of video frames of the public
street-view clipping in realtime, which becomes eventually input video-frames. From these input CCTV-video frames, the
YOLO-object detection function detects and identifies a group of persons and a single car on each video-frame of the public
street-view clipping. We can easily become aware that the YOLO system is able of identify those video-objects being
indicated with the color-lined boxes of different categories: car in deep-blue-lined box and person in pale-blue-lined box.
Additionally, the YOLO system provides a series of valuable properties of the detected video-objects such as position with
two points of (X, Y) coordinates with width and height properties, confidential probability, colors, and others. By using these
basic properties of the detected CCTV-video objects, we can make more delicate detection functions to be used for
guesstimating motions and situations on the CCTV-video frames as precisely as possible.

Next is about the CCTV-video object contextualization system that are performed via two essential operations:
Transformation and Guesstimate. Transformation fulfills an operational command that transforms the detected YOLO-objects =
and their properties into the contextual clues (e.g. objects, motions, and environs) that are formatted in a formation of the ¢
JSV format and XML tagging format, as well; Guesstimate executes a set of analytical guesstimate functions, each of WhICh Y
operates a guesstimate function either analytically deciding the additional property of the discovered CCTV-video object or
estimating the contextual clues (motion or environ) on a frame-sequence of the identified video-clippings. Note that the
meaning of contextualization implies to give their own semantical as well as contextual clues for characterizing and 1"7 3"5;:}"
describing the detected CCTV-video objects. Fig. 2 is to depict the functional framework of the CCTV-video contextualization ' J.
machine. Conclusively, in the next subsection, we verified the operability and capability of the essential functlonallty of the = v.ui m

CCTV-video contextualization system by applying them onto a real CCTV-V|deo cI|pp|ng file.
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Based upon the concrete framework described in the previous subsection, the authors’ research group implemented the CCTV-video contextualization system basically supporting the CCTV-video contextual clue (YOLO-object) detection functionality and' &
the tranSformatlon functionality, as well. We tried to venfy the functional correctness of the system through applying to a sample file of CCTV-video clippings captured from a real CCTV device installed at a street in Suwon. Fig. 3 shows a group of captured

| screens, each of which is produced by executing each operation of the functional framework of the CCTV-video object contextualization system, respectively. A captured CCTV-video frame in the left-most of the figure visualizes a group of YOLO- objects |
detected and identified with boxes by the YOLO-based deep learning system; The captured screen in the middle visualizes a tree-structured metadata containing all the CCTV-video frames and their properties; The two right-most captured screens qJ‘
visualize the contextual clues (YOLO-objects) in the JSON-formatted COME-Code and the enlarged contextual clues of YOLO-objects and their properties corresponding to the specific CCTV-video frame (i.e. FramelD = 10), respectively.

Summarily, we carried out an experimental verification to prove the functional correctness of the ‘fundamental operations such as YOLO-object detection, frame identification, COME-Code trans- formation, and contextual clue guesstimate to'be f
executed by the CCTV-video contextualization system. Consequently, it is certified for the conceptual architecture and its functional framework proposed in this paper to be operable and reasonable in not only performing the CCTV-video con- textualization

and bigdata analysis activities but also practically being applied to the CCTV-video surveillance platforms and systems.
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s!‘jfn this paper, we proposed a novel concept of the CCTV-video contextualization and its func- tional framework and ver|f|ed
he functional correctness via an experimental verification example. Consequently, the proposed conceptual architecture and
implemented system are tangible and appllcable as a meaningful tool for the CCTV-video surveillance platforms by
'*,‘ccessfully implementlng a CCTV-video object contextualization system with the cutting-edge deep learning approach,

'LO The authors’ research group has our confidence on this system’s expansibility and applicability in many video-related

i ""m engineering platforms and services. Additionally, we strongly believe that the huge amount of the contextualized
-V ldeo blgdata actlvely coIIected from the CCTV-V|deo cllpplngs and devices ought to be a very valuable and
' 5 Issued on the, V|deo data-flooding
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