
Auto-tuning of Hyperparameters by Parallel Search Using Xcrypt

Tatsuro Hanyu† Masatoshi Kawai‡ Takahiro Katagiri‡ Tasuku Hiraishi†3 Tetsuya Hoshino‡
Toru Nagai‡

Graduate School of Informatics, Nagoya University† Information Technology Center, Nagoya University‡
Department of Information and Computer Science, Faculty of Engineering, Kyoto Tachibana University†3

1 Introduction

Optimizing hyperparameters is a crucial task for ensuring both

the quality of responses and overall performance. In the

context of Convolutional Neural Networks (CNN), fine-tuning

hyperparameters such as batch sizes plays a pivotal role in

achieving high-quality AI models. However, the associated

tuning costs are significant, considering both the time

investment and human resources required. On the other hand,

parallel processing is indispensable for maximizing the

utilization of extensive computing resources. There are two

primary approaches to achieve this parallelization: program-

level (employing multiple processes or threads) and job-level

(multiple executions of the same program with different

configurations). Job-level parallelization proves particularly

advantageous for thorough parameter exploration and

performance evaluation. It enhances overall efficiency by

executing numerous identical computational tasks with

varying settings. In supercomputer systems, computational

resources are managed through a batch scheduler. Users can

create job scripts and submit compute tasks to a queue,

specifying the necessary resources. These scripts outline task

types, required computing resources, execution times, etc. The

scheduler then executes the jobs based on resource availability.

However, variations in scheduler interfaces and job script

syntax across different supercomputer systems can pose

challenges, making it challenging to reuse scripts across

multiple environments. Addressing this challenge, a Perl-based

scripting language named Xcrypt [1][2] has been developed for

job-level parallel programming. In our research, we aimed to

create an automated system for hyperparameter search using

Xcrypt, specifically focusing on auto-tuning (AT) functions [3].

2 Xcrypt

Xcrypt stands as a scripting language designed for

orchestrating processes that execute numerous jobs, whether

sequentially or in parallel, on a supercomputer. Built upon Perl,

it offers a user-friendly approach for simple processes, like

parameter sweeps, without necessitating in-depth Perl

knowledge. What sets Xcrypt apart is its capability to execute a

single script seamlessly across various environments,

eliminating concerns about divergent job submission

interfaces across supercomputers. The framework supports

various extensions, and users have the option to develop

custom extensions, such as limiting the number of

simultaneous job submissions and specifying job dependencies

declaratively.

3 Preliminary Result

Table 1 illustrates the results of auto-tuning (AT) for batch size

optimization in ResNet50 using Xcrypt. The exploration spans

a batch size range from 1 to 700, resulting in a comprehensive

search encompassing a total of 700 configurations.

Table 1: Optimization Result with Xcrypt.

 Batch size loss Execution time [s.]

Best 212 8.4289 71.2

4 Conclusion

In this study, Xcrypt has been integrated for hyperparameter

optimization specifically applied to ResNet50. In future work,

we plan to delve into the exploration of a sophisticated search

methodology using Xcrypt.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number
JP19H05662.

REFERENCES
[1] Tasuku Hiraishi, Tatsuya Abe, Takeshi Iwashita, Hiroshi Nakashima. Xcrypt:

A Perl Extension for Job Level Parallel Programming. Second International
Workshop on High-performance Infrastructure for Scalable Tools WHIST,
2012

[2] Masaru Ueno, Tasuku Hiraishi, Motoharu Hibino, Takeshi Iwashita, Hiroshi
Nakashima. Multilingualization Based on RPC for Job-Level Parallel Script
Language, Xcrypt. IPSJ Transaction on Programming, Vol. 6, No. 2, pp. 55-68,
2013

[3] Takahiro Katagiri, Daisuke Takahashi, Japanese Autotuning Research:
Autotuning Languages and FFT, Proc. of the IEEE, Vol. 106, Issue 11, pp. 2056
– 2067, 2018

