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Introduction
• To strike a balance between accuracy and inference speed, we

propose a center-based anchor-free method inspired by CenterNet

• Our AFAN can aggregate multiscale features by weighting while
reducing the number of calculations.

• We propose a CEM to accurately classify and localize objects.

• Our AFACENet shows the performance of the KITTI dataset,
particularly for small objects, such as pedestrians and cyclists.

• Our AFACENet achieves 36FPS real-time detection speed at a
resolution of 640 × 480 accelerating using an Nvidia RTX3070.
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Accurate heatmap prediction will influence the results of object classification and localization.
The regression heatmap must regress the correct values in the corresponding position.

METHODOLOGY

• Adaptive Feature Aggregation Network

• Attention Head
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EXPERIMENT

• Dataset and Metrics
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Detection results of the proposed AFACENet. All detection results have their corresponding BEVs.

Class Method Easy Moderate Hard

MonoRCNN [38] 16.94 12.00 9.46

MonoDIS [35] 16.50 12.20 10.30

MonoPair [39] 16.28 12.30 10.42

M3D-RPN [40] 14.53 11.07 8.65

PGD [41] 19.27 13.23 10.65

DFR-Net [42] 19.55 14.79 11.04

Car Zhou et al. [43] 20.15 16.09 15.59

MonoFENet [18] 21.29 13.87 11.71

GUPNet [44] 20.11 14.20 11.77

MonoDTR [45] 21.99 15.39 12.73

MDS-Net [46] 24.30 14.46 11.12

AFACENet 21.63 19.25 16.49

MonoDIS 9.50 7.10 5.70

Zhou et al. 15.80 13.80 12.30

M3D-RPN 4.92 3.48 2.94

Pedestrian D4LCN [47] 4.55 3.42 2.83

PGD 2.28 1.49 1.38

MDS-Net 10.68 7.09 6.06

AFACENet 21.30 18.17 17.49

MonoDIS 2.70 1.50 1.30

Zhou et al. 2.50 2.00 2.00

M3D-RPN 0.94 0.65 0.47

Cyclist D4LCN 2.45 1.67 1.36

PGD 2.81 1.38 1.20

MDS-Net 5.37 2.68 2.22

AFACENet 23.07 14.02 13.74

THE RESULT IS EVALUATED UNDER AP40 ON THE  KITTI VALIDATION SPLIT. FOR CAR CLASS, 
THE IOU THRESHOLD ≥ 0.7. FOR PEDESTRIANS AND CYCLISTS, THE IOU THRESHOLD ≥ 0.5.

CONCLUSION
• We used an off-the-shelf ImageNet pre-trained model. ImageNet

has a diversity feature that can benefit the model training. However,

the training model on ImageNet is time-consuming. Therefore, it is

important to quickly devise a method to train and finetune an

ImageNet pre-trained model.

• Our model has six output heads and loss functions. When modeling

during backpropagation, the gradient flow is crucial for the goodness

of learning. Therefore, some skills, such as the policy gradient, may

further improve the training model.


