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1 INTRODUCTION
A system of linear equations 𝐴𝒙 = 𝒃 having a large sparse coeffi-
cient matrix𝐴 ∈ R𝑁×𝑁 often arises in a wide range of applications.
In these applications, the Krylov subspace iterative methods such
as the Conjugate Gradient (CG) method are typically used to solve
the linear system. In the iterative method, we continuously refine
an approximate solution vector until a given convergence criterion
is satisfied. The relative residual norm is typically used for the crite-
rion. Accordingly, we obtain an approximate solution vector, whose
relative residual norm is less than a preset threshold. However, from
application viewpoints, the (relative) error norm is more important
than the residual norm, which more directly represents the accu-
racy of an approximate solution vector. Although it is difficult to
calculate the relative error norm, it can be bounded by the prod-
uct of the condition number of 𝐴 and the relative residual norm.
Consequently, if we can estimate the condition number of 𝐴 in the
iterative solution process, it can be useful to evaluate the error of
the obtained (approximate) solution vector to the true solution.

2 RESEARCH PURPOSE AND METHOD
The purpose of the present research is to evaluate two condition
number estimation methods in the following scenario. We solve a
linear systemwith a large sparse symmetric positive-definite matrix
using a (parallel) ICCG solver. In the solution process, we also
calculate the largest and the smallest eigenvalues of the coefficient
matrix to estimate the condition number.

One of the estimation methods is the Lanczos method, which
gives the computation of both the largest and smallest eigenvalues.
The other method is based on the error vector sampling (ES) [2],
which can be used for finding the smallest eigenvalue. In this
method, the largest eigenvalue is calculated by using the power
method.

We conduct numerical tests and compare the above methods
from the viewpoints of the accuracy of the obtained condition
number and the additional computational time dedicated to the
condition number estimation.

3 NUMERICAL RESULTS
We conducted a numerical test using 9 test matrices from the SuiteS-
parse Matrix Collection [1]. All matrices are real symmetric positive
definite and have more than 500,000 dimensions. We used a compu-
tational node having two Intel Xeon Gold 6148 processors. We run

Figure 1: Evaluate the accuracy

Figure 2: Evaluate the execution time

our programs with 40 threads. The Localized IC preconditioning
method was used for parallelization of the ICCG solver.

Figure 1 shows the ratio of the estimated condition number 𝜅est
to its reference value 𝜅ref . To calculate the reference value, we used
the inverse iteration and the power methods, which give accurate
results but demand large computational cost. Figure 1 indicates that
two methods (Lanczos and ES-based) are comparable in terms of the
accuracy of the condition number estimation result. Figure 2 shows
the ratio of 𝑡s + 𝑡e to 𝑡s, where 𝑡s is the time for the solution process
and 𝑡e is the additional time for the condition number estimation.
Figure 2 indicates that the ES-based method is slightly faster than
the Lanczos method. However, for most of the test matrices, both
methods could estimate the condition number in 10 - 20 % of the
solution time. We conclude that both methods can be used for the
condition number estimation with a solution process of a linear
system.
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