Condition Number Estimation in a Solution Process of a Large and Sparse Linear System

Yuya Kudo¹, Yuki Satake¹, Takeshi Fukaya¹, Takeshi Iwashita² 1: Hokkaido University 2: Kyoto University

1. INTRODUCTION

Solving a system of linear equations

- ► We consider solving a system of linear equations (SLE). Ax = b
 - A : large sparse coefficient matrix $(N \times N)$
 - -x: solution vector
 - **b** : right-hand side vector
- This equation often appears in a wide variety of applications.
 - E.g) Thermal dynamics, Electrodynamics,...
- The iterative methods are typically used to solve the linear system. The iterative method

4. COMPUTATIONAL COST

SpMV needs to be calculated for each method. (SpMV is sparse matrix-vector multiplication.) Compute SpMV for the search direction vector. ICCG method **Lanczos method** Compute SpMV for a subspace configuration. Compute SpMV for the power method. ES method Compute of SpMV Aw_1 , Aw_2 for any vectors w_1 , w_2 .

Using blocking for $A[w_1, w_2]$ can make the computation more efficient.

5. NUMERICAL RESULTS

A defined procedure is repeated to update an approximate solution.

► It is important to know when to stop the repetition.

 \rightarrow Judge convergence based on the residual vector r ($\coloneqq Ax - b$).

It is common to stop iterations when $\frac{\|r\|_2}{\|b\|_2} \leq \varepsilon$.

Here, $\frac{\|r\|_2}{\|b\|_2}$ is the relative residual norm, ε is defined threshold.

Background

It is important to estimate the error of an approximate solution \tilde{x} . The error vector is calculated as $e = x^* - \tilde{x} (x^*)$: the exact solution). **Problem** It is difficult to calculate the relative error norm. (There is no information on the exact solution.)

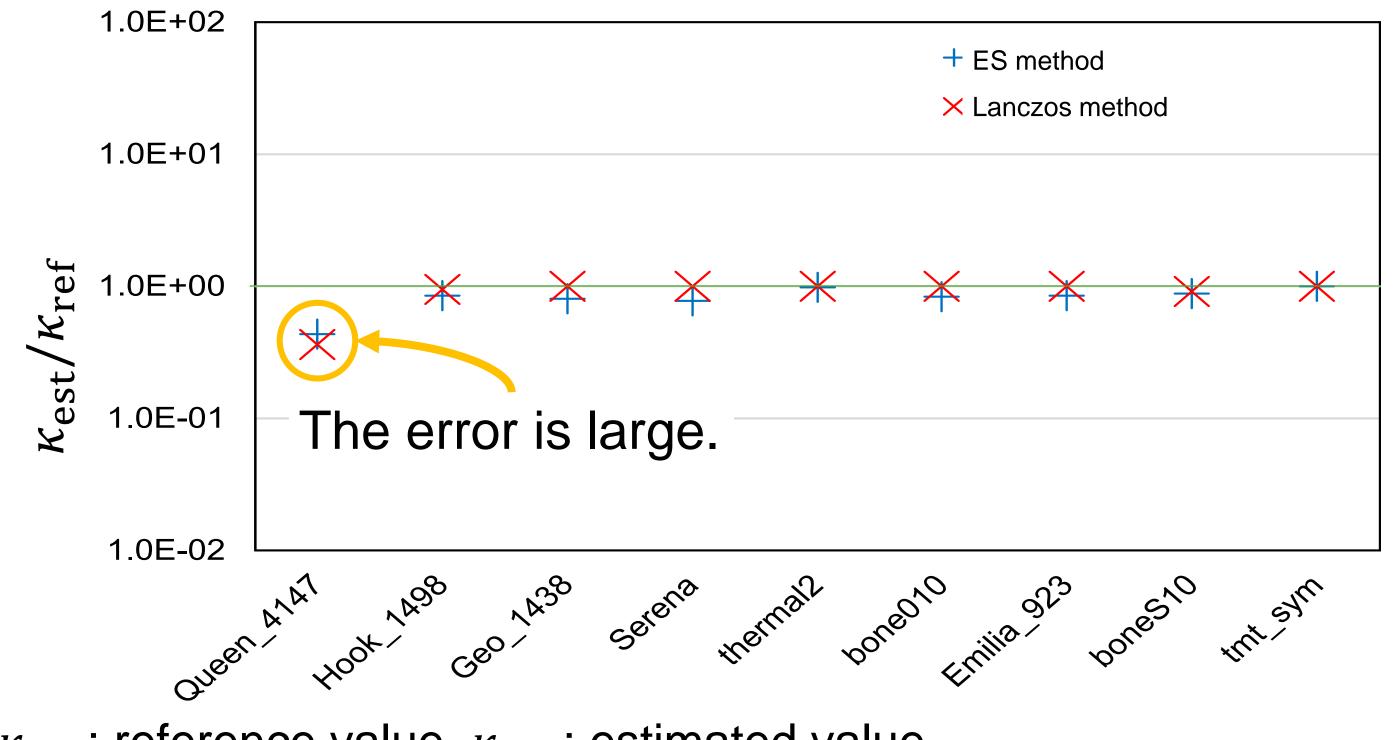
Indirectly assess the indicator using the following inequality. : $\frac{\|\boldsymbol{e}\|_{2}}{\|\boldsymbol{x}^{*}\|_{2}} \leq \kappa_{2}(A) \frac{\|\boldsymbol{r}\|_{2}}{\|\boldsymbol{b}\|_{2}}, \quad \kappa_{2}(A) = \|A\|_{2} \|A^{-1}\|_{2}$ Here, $\kappa_2(A)$ is called the (2-norm) condition number of A. $\kappa_2(A)$ is important for evaluating the accuracy of the solution.

SEARCH Problem setting

- ► We use 9 different test matrices with over 500,000 dimensions.
- We use the Localized IC preconditioning for parallelization of ICCG.
- ► We use one node of the Grand Chariot at Hokkaido University. (Intel Xeon Gold 6148 (2.4 GHz, 20-Core) x2 and 384GB memory)
- Compiler : Intel icc (2022.3.1) and mkl (2022.0.2, with -mkl=parallel)
- Runs on 40 threads.

Accuracy

Two methods are comparable in terms of the accuracy.



- \blacktriangleright A is a large sparse symmetric positive-definite matrix.
 - $\rightarrow \kappa_2(A)$ is given by $\kappa_2(A) = \lambda_{\max}/\lambda_{\min}$
 - $(\lambda_{\max} : \text{largest eigenvalue of } A, \lambda_{\min} : \text{smallest eigenvalue of } A)$
- Calculating $\kappa_2(A)$ while solving a SLE.
- We use a (parallel) ICCG solver.

Research assignment and content

- Estimating the smallest eigenvalue can be challenging.
 - \rightarrow We consider two eigenvalue solvers for large-scale matrix.
 - Lanczos method \bullet
 - Error vector sampling (ES) method [1]
- The additional cost of computing $\kappa_2(A)$ may be high.
 - \rightarrow Combine identical calculations for greater efficiency.

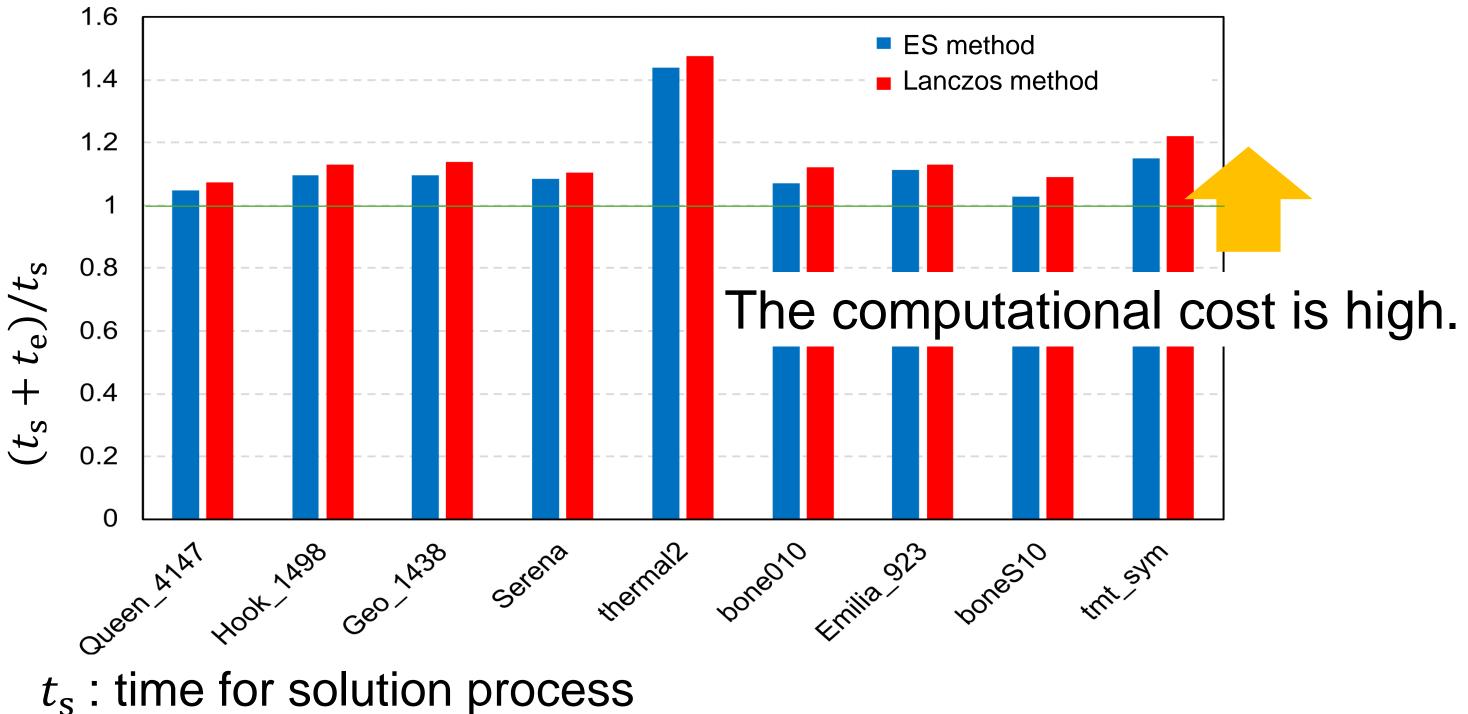
Research Purpose

To evaluate two methods for estimating the condition number. **Research contents**

 κ_{ref} : reference value, κ_{est} : estimated value (κ_{ref} is calculated by the power method and inverse iteration method)

Execution time

Both methods could estimate $\kappa_2(A)$ in 10-20% of the solution time. (Excluding thermal2)



 $t_{\rm e}$: additional time for the condition number estimation

- Evaluate the accuracy of the condition number $\kappa_2(A)$.
- Discuss computational cost when running alongside with the ICCG.

Calculate the condition number

 $\kappa_2(A) = \frac{\pi_{\max}}{2}$

3. METHOD

Eigenvalue Problem

 $A\boldsymbol{v} = \lambda\boldsymbol{v}$

Apply the Rayleigh-Ritz method.

Set a subspace and calculate approximate eigenvalues of A.

- Lanczos method : Krylov subspace \rightarrow Obtain λ_{max} and λ_{min} .
- \blacktriangleright ES method : Space spanned by the error vector \rightarrow Obtain λ_{\min} . **Note** The maximum eigenvalue is obtained by the power method.

6. CONCLUTION

Conclusion

- We examined two condition number estimation methods.
- Both methods can be used for the condition number estimation. Future work
 - We consider non-symmetric matrices.

REFERENCE

[1] Takeshi Iwashita, Kota Ikehara, Takeshi Fukaya, and Takeshi Mifune. 2023. Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems. NLAA (2023), e2512

Jan 25-27, 2024 HPC Asia 2024 @WINC AICHI (Nagoya, Japan)