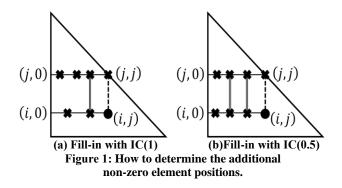
IC(p) preconditioning for large symmetric linear equations

Koki Masui[†] Osaka University Japan masui@ist.osaka-u.ac.jp

1. INTRODUCTION

Iterative methods are often used to solve large-scale linear equations such as high frequency electromagnetic field analysis [1]. However, as the matrix size becomes larger, convergence of iterative methods such as the Krylov subspace method becomes worse, and it takes a lot of time to solve equations. The preconditioning method such as Incomplete Cholesky (IC(p)) preconditioning [2] with fill-in is used to improve the convergence of iterative methods, where p is the level of fill-in. While increasing the fill-in level generally improves convergence, the number of non-zero elements in the preconditioning matrix increases by a factor of several, sometimes more than ten, for each additional level, which can exhaust memory in huge problems.


Therefore, in this study, we present a method that is able to control the level of fill-in independent of the matrix value and show the results for electromagnetic field problems.

2. FILL-IN

Figure 1 shows how to determine the position of additional nonzero elements in the preconditioning matrix. In this study, we propose a method, called IC(0.5), which can be regarded as an intermediate method between IC(0) and IC(1).

In IC(1), the additional non-zero elements are determined as shown in Fig. 1(a); the element in (i, j) becomes additional non-zero if there are any non-zero elements in rows i and j that have the same column.

On the other hand, in our IC(0.5), additional non-zero elements are determined as shown in Fig. 1(b); the element in (i, j) becomes additional non-zero if *two or more* non-zero elements in rows *i* and *j* have the same column. In this method, we can add non-zero elements that have large effects to convergence (that means to improve convergence well) and reject others.

3. NUMERICAL EXPERIMENTS

All calculations were performed using an Intel CPU Core i9-9900 (3.60 GHz) processor with 32 GB memory, the gcc 11.4.0 Fumihiko Ino Osaka University Japan ino@ist.osaka-u.ac.jp

compiler, and the "-O3 -mfma" optimization flag. As a high frequency electromagnetic field problem, let us consider a wave equation having an electric field derived from Maxwell's equation. We constructed problems with 160,013 and 979,464 degrees of freedom by ADVENTURE_Magnetic [3]. The initial solution of the equation Ax = b was set to x = 0 and the convergence tolerance was set to 10^{-9} .

Table 1 shows the number of non-zero elements in the preconditioning matrix at different fill-in levels. The proposed IC(0.5) successfully increased the number of non-zero elements than IC(0) and reduced the number of non-zero elements by about half compared to IC(1).

Table 2 shows the iteration counts and calculation time. As can be seen in the table, our proposed method succeeded in reducing the calculation time by up to 19% compared to IC(1).

 Table 1. The Number of non-zero elements in the preconditioning matrix.

size	IC(0)	IC(0.5)	IC(1)	
160,013	1,343,678	1,763,200	3,516,247	
979,464	8,387,104	11,080,164	22,268,605	

Table 2. Performance evaluation.

	IC(0)		IC(0.5)		IC(1)	
size	iter.	time [s]	iter.	time [s]	iter.	time [s]
160,013	9,491	202	8,026	197	5,264	199
979,464	8,199	1,106	6,519	1,015	5,312	1,249

4. CONCLUSION

In this study, we proposed IC(p) preconditioning method that can control the level of p. Moreover, we implemented an iterative method with different fill-in levels and evaluate the performance for complex symmetric matrices that appear in high-frequency electromagnetic field analysis. Our proposed method succeeded in controlling the non-zero elements, and reducing the calculation time compared to IC(0) and IC(1).

In future work, we investigate the effectiveness of the method with other problems and consider better fill-in methods.

REFERENCES

- Amane Takei, Shinobu Yoshimura, Hiroshi Kanayama. 2008. Large-Scale Parallel Finite Element Analyses of High Frequency Electromagnetic Field in Commuter Trains. Comput. Modeling Engrg. Sci., 31 (Jul. 2008), pp.13-24.
- [2] Meijerink J. A. and van der Vorst H. A. 1977. An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix. Mathematics of Computation, 31, 137 (Jan 1977), pp. 148-162.
- [3] ADVENTURE Project, https://adventure.sys.t.u-tokyo.ac.jp/