Experimenting with GPTune for Optimizing
Linear Algebra Computations

Makoto Morishita

Osni Marques

Takahiro Katagiri

morishita@hpc.itc.nagoya-u.ac.jp Yang Liu katagiri@cc.nagoya-u.ac.jp
Graduate School of Informatics, Lawrence Berkeley National Information Technology Center,
Nagoya University Laboratory Nagoya University

Aichi-ken, Japan

1 GPTUNE

GPTune[1] is an autotuning framework that solves an underlying
black-box optimization problem, using surrogate modeling. GPTune
uses Bayesian optimization based on Gaussian Process regression
and supports advanced features such as multi-task learning, transfer
learning, multi-fidelity/objective tuning, and parameter sensitivity
analysis. GPTune targets the autotuning of HPC codes, in particular
applications that are very expensive to evaluate.

Problem description

o Input Space
— This space defines the problems to be tuned. Every point
in this space represents one instance of a problem.
e Parameter Space
— This space defines the application parameters to be tuned.
A point in this space represents a combination of the pa-
rameters. The tuner finds the best possible combination
of parameters that minimizes the objective function asso-
ciated with the application.
e Output Space
— This space defines the objective of the application to be
optimized. For example, this can be runtime, memory or
energy consumption in HPC applications or prediction
accuracy in machine learning applications.

2 EXPERIMENTS

Berkeley, USA

Environment Name 0s CPU Memory
roxy fora |7y 1 cBook Ai Apple M1 chi
distributed acoo0 T | Ventura 13.4.1 | PP e P 8[GB
environment) (M1, 2020) 8 cores [GB]
Computation Tuning Parameters
QR factorization nb row block size
A:Ae Rménz QR mb column block size
Q : orthogonal matrix P number of processes
Problem R : upper triangular matrix number of MPI
m=n=1000 npernode | processes per
compute node
LU factorization , row block size
A=LU n (= column block size)
A:Ae€RV™
L : lower triangular matrix P row process grid
U : upper triangular matrix 7 column process grid

Figure 1: Experimental environment

Aichi-ken, Japan

In this work, we have focused on the autotuning of two algo-
rithms implemented in ScaLAPACK[2]: QR and LU factorizations.
In these cases, the tuning parameters are the block size (for cache
memory optimization), and the process grid size for distributed
computing.

5%5 matrix partitioned in 2x2 block size 2x2 process grid
'

|

| |
ay1 Q12 Q13 Qg4 a1 Ay Qi3 Qyq
A1 Ozz 1023 O24 , _ azi @ “Z“Zl

a3y | A3s - ass
%a1 Qa2 B4z Gag | Qas) 31 g3s| A3zt
1as 54 | Ass 41 Ays5 | Qql—1044

Figure 2: Example of 2D block-cyclic distribution

3 RESULT

Figure 3: Execution time for 4 tuning parameters Left: (mb,
nb), Right: (npernode, p). The optimal configuration is given
by mb=88, nb=64, npernode=8, p=1 (blue arrow).

4 DISCUSSION

We have experimented with GPTune to find optimal parameters for
QR and LU factorizations, therefore obtaining better performance.
And we have learned how to select specific tuning parameters
by changing the implementation of Space and Ojective Function
in GPTune, and how to adapt the target application (in this case
ScaLAPACK) to properly interface with GPTune.

ACKNOWLEDGMENTS

This work was supported by JST SICORP Grant Number JPM]JSC2201,
Japan.

REFERENCES

[1] GPTune-Dev. 2021. GPTune History Database. https://gptune.lbl.gov/.

[2] Berkeley; Univ. of Colorado Denver; Univ. of Tennessee; Univ. of California and
NAG Ltd. 2022. ScaLAPACK-—Scalable Linear Algebra PACKage. https://www.
netlib.org/scalapack/.

https://gptune.lbl.gov/
https://www.netlib.org/scalapack/
https://www.netlib.org/scalapack/

	1 GPTune
	2 Experiments
	3 Result
	4 Discussion
	Acknowledgments
	References

