
Makoto Morishita1, Osni Marques2, Yang Liu2, Takahiro Katagiri1
1Nagoya University, 2Lawrence Berkeley National Laboratory

ABSTRACT

GPTune
GPTune is an autotuning framework that solves an underlying black-box optimization
problem, using surrogate modeling. GPTune uses Bayesian optimization based on
Gaussian Process regression and supports advanced features such as multi-task
learning, transfer learning, multi-fidelity/objective tuning, and parameter sensitivity
analysis. GPTune targets the autotuning of HPC codes, in particular applications that
are very expensive to evaluate.

Problem description

qSpaces
1. Input space: This space defines the problems to be tuned. Every point in this space

represents one instance of a problem.

2.Parameter Space: This space defines the application parameters to be tuned. A point
in this space represents a combination of the parameters. The tuner finds the best
possible combination of parameters that minimizes the objective function associated
with the application.

3.Output Space. This space defines the objective of the application to be optimized. For
example, this can be runtime, memory or energy consumption in HPC applications
or prediction accuracy in machine learning applications.

qObjective Function
The user need to define a (Python) function representing the objective function to be
optimized

LU factorization

FUTURE WORK

In High Performance Computing (HPC), software often has many parameters that impact its performance. However, it is difficult to determine
optimal values for such parameters in an impromptu way. The automatic tuning – autotuning – of parameters is therefore an area of great interest.
The purpose of this work is to understand the methodology of GPTune, which is an autotuning framework developed by DOE’s Exascale
Computing Project, and use the framework in a set of applications of interest.

QR factorization

def objectives(point):
x = point[‘x’]
call HPC code with parameter x
…

get the function value f
…

return [f]

parameter_space = Space([Real(0., 1., transform="normalize", name="x")])

Theoretical
Performance 7.782 [TFLOPS]

Memory 72 [TiB]
(32[GiB] / Node)

Number of Nodes 2,304 Nodes
(110,592 cores)

CPU
A64FX

(Armv8.2-A + SVE)
48 cores, 2.2 [GHz]

Figure 4. Supercomputer Flow TypeⅠ
(FUJITSU Supercomputer PRIMEHPC FX1000)

Figure 2. Execution time for 4 tuning parameters
Left: (mb, nb), Right: (npernode, p). The optimal configuration is

given by mb=88, nb=64, npernode=8, p=1 (blue arrow).

・Install GPTune on the Supercomputer
Flow TypeⅠ to examine its behavior on a
Fugaku-type machine (arm architecture).
・Apply GPTune to applications of interest,
including Fast Fourier Transform (e.g. FFTX,
which is the exascale follow-on to the FFTW
open source discrete FFT package).

Figure 3. Execution time for 3 tuning parameters
Left: (nb, p), Right: (nb, q). The optimal configuration is given

by nb=32, p=1, q=3 (blue arrow).

Figure 1. Example of 2D block-cyclic distribution

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑
𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑
𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒂𝟏𝟒 𝒂𝟏𝟓
𝒂𝟐𝟒 𝒂𝟐𝟓
𝒂𝟑𝟒 𝒂𝟑𝟓

𝒂𝟒𝟏 𝒂𝟒𝟐 𝒂𝟒𝟑
𝒂𝟓𝟏 𝒂𝟓𝟐 𝒂𝟓𝟑

𝒂𝟒𝟒 𝒂𝟒𝟓
𝒂𝟓𝟒 𝒂𝟓𝟓

→

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟓
𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟓
𝒂𝟓𝟏 𝒂𝟓𝟐 𝒂𝟓𝟓

𝒂𝟏𝟑 𝒂𝟏𝟒
𝒂𝟐𝟑 𝒂𝟐𝟒
𝒂𝟓𝟑 𝒂𝟓𝟒

𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟓
𝒂𝟒𝟏 𝒂𝟒𝟐 𝒂𝟒𝟓

𝒂𝟑𝟑 𝒂𝟑𝟒
𝒂𝟒𝟑 𝒂𝟒𝟒

5×5 matrix partitioned in 2×2 block size 𝟐×𝟐 process grid

𝟎

𝟐 𝟑

𝟏

EXPERIMENTS

HARDWARE

In this work, we have focused on the autotuning of
two algorithms implemented in ScaLAPACK: QR
and LU factorizations. The former is provided with
the GPTune repository, while the latter was
implemented during my visit. In these cases, the
tuning parameters are the block size (for cache
memory optimization), and the process grid size for
distributed computing.

Environment
(proxy for a
distributed

environment)

Name OS CPU Memory

MacBook Air
(M1, 2020) Ventura 13.4.1 Apple M1 chip

8 cores 8 [GB]

Problem
𝑚=𝑛=1000

Computation Tuning Parameters

QR factorization
𝐴 = 𝑄𝑅

𝐴 : 𝐴 ∈ ℝ!×#
𝑄 : orthogonal matrix
𝑅 : upper triangular matrix

𝑛𝑏 row block size

𝑚𝑏 column block size

𝑝 number of processes

𝑛𝑝𝑒𝑟𝑛𝑜𝑑𝑒 number of MPI processes
per compute node

LU factorization
𝐴 = 𝐿𝑈

𝐴 : 𝐴 ∈ ℝ#×#
𝐿 : lower triangular matrix
𝑈 : upper triangular matrix

𝑛𝑏 row block size
(= column block size)

𝑝 row process grid

𝑞 column process grid

DISCUSSION
① We have experimented with GPTune to find
optimal parameters for QR and LU factorizations,
therefore obtaining better performance.
② We have learned how to select specific tuning
parameters by changing the implementation of
Space and Ojective Function in GPTune, and how
to adapt the target application (in this case
ScaLAPACK) to properly interface with GPTune.

Experimenting with GPTune for Optimizing
Linear Algebra Computations

