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ABSTRACT

GPTune
GPTune is an autotuning framework that solves an underlying black-box optimization 
problem, using surrogate modeling. GPTune uses Bayesian optimization based on 
Gaussian Process regression and supports advanced features such as multi-task 
learning, transfer learning, multi-fidelity/objective tuning, and parameter sensitivity 
analysis. GPTune targets the autotuning of HPC codes, in particular applications that 
are very expensive to evaluate.

Problem description

qSpaces
1. Input space: This space defines the problems to be tuned. Every point in this space 

represents one instance of a problem.

2.Parameter Space: This space defines the application parameters to be tuned. A point 
in this space represents a combination of the parameters. The tuner finds the best 
possible combination of parameters that minimizes the objective function associated 
with the application.

3.Output Space. This space defines the objective of the application to be optimized. For 
example, this can be runtime, memory or energy consumption in HPC applications 
or prediction accuracy in machine learning applications.

qObjective Function
The user need to define a (Python) function representing the objective function to be 
optimized

LU factorization

FUTURE WORK

In High Performance Computing (HPC), software often has many parameters that impact its performance. However, it is difficult to determine 
optimal values for such parameters in an impromptu way. The automatic tuning – autotuning – of parameters is therefore an area of great interest. 
The purpose of this work is to understand the methodology of GPTune, which is an autotuning framework developed by DOE’s Exascale
Computing Project, and use the framework in a set of applications of interest.

QR factorization

def objectives(point):
x = point[‘x’]
# call HPC code with parameter x
…

# get the function value f 
…

return [f]

parameter_space = Space([Real(0., 1., transform="normalize", name="x")])

Theoretical
Performance 7.782 [TFLOPS]

Memory 72 [TiB]
(32[GiB] / Node)

Number of Nodes 2,304 Nodes
(110,592 cores)

CPU
A64FX

(Armv8.2-A + SVE)
48 cores, 2.2 [GHz] 

Figure 4. Supercomputer Flow TypeⅠ
(FUJITSU Supercomputer PRIMEHPC FX1000)

Figure 2. Execution time for 4 tuning parameters
Left: (mb, nb), Right: (npernode, p). The optimal configuration is 

given by mb=88, nb=64, npernode=8, p=1 (blue arrow).

・Install GPTune on the Supercomputer 
Flow TypeⅠ to examine its behavior on a 
Fugaku-type machine (arm architecture).
・Apply GPTune to applications of interest, 
including Fast Fourier Transform (e.g. FFTX, 
which is the exascale follow-on to the FFTW 
open source discrete FFT package).

Figure 3. Execution time for 3 tuning parameters
Left: (nb, p), Right: (nb, q). The optimal configuration is given 

by nb=32, p=1, q=3 (blue arrow).

Figure 1. Example of 2D block-cyclic distribution
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EXPERIMENTS

HARDWARE

In this work, we have focused on the autotuning of 
two algorithms implemented in ScaLAPACK: QR 
and LU factorizations. The former is provided with 
the GPTune repository, while the latter was 
implemented during my visit. In these cases, the 
tuning parameters are the block size (for cache
memory optimization), and the process grid size for 
distributed computing.

Environment
(proxy for a 
distributed 

environment)

Name OS CPU Memory

MacBook Air
(M1, 2020) Ventura 13.4.1 Apple M1 chip

8 cores 8 [GB]

Problem
𝑚=𝑛=1000

Computation Tuning Parameters

QR factorization
𝐴 = 𝑄𝑅

𝐴 : 𝐴 ∈ ℝ!×#
𝑄 : orthogonal matrix
𝑅 : upper triangular matrix

𝑛𝑏 row block size

𝑚𝑏 column block size

𝑝 number of processes

𝑛𝑝𝑒𝑟𝑛𝑜𝑑𝑒 number of MPI processes 
per compute node

LU factorization
𝐴 = 𝐿𝑈

𝐴 : 𝐴 ∈ ℝ#×#
𝐿 : lower triangular matrix
𝑈 : upper triangular matrix

𝑛𝑏 row block size
(= column block size)

𝑝 row process grid

𝑞 column process grid

DISCUSSION
① We have experimented with GPTune to find 
optimal parameters for QR and LU factorizations, 
therefore obtaining better performance. 
② We have learned how to select specific tuning 
parameters by changing the implementation of 
Space and Ojective Function in GPTune, and how 
to adapt the target application (in this case 
ScaLAPACK) to properly interface with GPTune.

Experimenting with GPTune for Optimizing
Linear Algebra Computations


