

An energy-aware job scheduling method supporting on-demand job execution

Daiki Nakai¹, Keichi Takahashi^{1,2}, Yoichi Shimomura², and Hiroyuki Takizawa^{1,2} 1 Graduate School of Information Sciences, Tohoku University 2 Cyberscience Center, Tohoku University daiki.nakai.q4@dc.tohoku.ac.jp

Background

- High performance computing (HPC) systems are not only used for traditional batch jobs but also for on-demand jobs with deadlines.
- An HPC system usually has a power management mechanism, and thus a node could be powered off or turned into a low-power mode based on the operation policy of the system.

Assumptions

- There are two potential reasons that a node is unavailable for on-demand job execution upon the job request.
 - The node is **running another job**.
 - The node is **in a low-power mode or powered off**, referred to as sleeping.

Suspend overhead

Model of the suspend overhead

- Suspending a job is accomplished by writing out the memory **content to persistent storage** and resuming the job is by **restoring** the memory content from storage.
- The overhead required to suspend and resume a job are hence proportional to the memory usage of the job.
- If multiple jobs need to be suspended, their memory contents are \bullet sequentially written to persistent storage one by one.

$$O = \frac{1}{\beta_w} \sum_{i=1}^n M_i + \frac{1}{\beta_r} \sum_{i=1}^n M_i$$

suspend restore

 \bullet

HPC Asia 2024

0: suspend overhead M_i : Memory usage of job i *n* : Number of jobs $\boldsymbol{\beta}_{w}$: Write bandwidth β_r : Read bandwidth

Shared computing resources with power-saving

Each node is in one of the

following three modes.

- Running
 - A job is running on the node.
 - Idle
 - Any job is assigned to the node.
- Sleep
 - The node is **powered off** since it has not been unused for a certain period.

Job

Evaluation Proposed Method The simulation in this work assumes the system configuration of **AOBA**-This work proposes a job scheduling method for selecting whether **A**_[1] installed at the Cyberscience Center, Tohoku University.

- to suspend a running job or to start up a sleeping node.
- The proposed method **reduces the total overhead by appropriately selecting** how to secure computing resources for on-demand jobs.

- Two types of jobs used in the evaluation
 - **On-demand jobs with tight deadlines** (e.g., urgent jobs for disaster mitigation)

#2

#1

On-demand jobs with loose deadlines (e.g., interactive jobs for user commands)

	node	Excution time	Deadline
Urgent job	64	500 (s)	600 (s)
Interactive job	8~32	1,200 \sim 1,800 (s)	2,400 (s)

Node start up improves the execution efficiency of normal jobs, and suppresses the increase in power consumption while maintaining a deadline achievement rate.

> This study was partially supported by JSPS KAKENHI Grant Numbers JP21H03449 and JP22K19764.

https://www.hpc.is.tohoku.ac.jp/home-en/ daiki.nakai.q4@dc.tohoku.ac.jp