
Graph500 benchmark with automatic performance tuning
Masahiro Nakao

RIKEN R-CCS
Japan

masahiro.nakao@riken.jp

Koji Ueno
Fixstars Corporation

Japan
koji.ueno@fixstars.com

Katsuki Fujisawa
Kyushu University

Japan
fujisawa@imi.kyushu-u.ac.jp

Yuetsu Kodama
RIKEN R-CCS

Japan
yuetsu.kodama@riken.jp

Mitsuhisa Sato
RIKEN R-CCS

Japan
msato@riken.jp

1 INTRODUCTION
In various fields such as social networks and drug discovery, there
are many attempts to represent data relationships as graph struc-
tures and analyze them on computers at high speed. We have been
developing breadth-first search (BFS) on the Graph500 benchmark
applying various techniques[1], and have achieved the world’s top
performance in the Graph500 list (https://graph500.org) as of the
time of writing (October 2023). However, since most existing re-
search, including our study, targets specific graphs and computer
systems, the burden of performance tuning for users has become
an issue. Therefore, this study develops an automatic performance
tuning function that automatically determines the optimal param-
eters for BFS in the Graph500 benchmark.

2 HYBRID BREADTH-FIRST SEARCH
In the Graph500 list, Hybrid-BFS algorithm[2], shown in Fig. 1,
is often used. In Hybrid-BFS, BFS proceeds by switching between
the conventional top-down search method A and another search
method called bottom-up search B. The current starting points
are 2⃝, and unexplored adjacent points ⃝ are searched. One is-
sue with top-down search is that the current starting points 2⃝
need to check all the adjacent points, but since most of the adjacent
points have already been searched (the first starting point 1⃝ and
the current starting points 2⃝ have already been searched), many
redundant checks occur in the middle stage of BFS. The arrow rep-
resents the check. In bottom-up search, the current starting points
2⃝ are searched from the unexplored vertices ⃝, which is the op-
posite direction of top-down search. The advantage of bottom-up
search is that it reduces redundant checks because the check can
be interrupted if even a single current starting point 2⃝ is found.

3 AUTOMATIC PERFORMANCE TUNING
The Hybrid-BFS process starts top-down, goes bottom-up in the
middle, and ends top-down. The timing of these two transitions
has a strong influence on performance. The paper[2] recommends
𝑚𝑓 > 𝑚𝑢/𝛼 for the switch from top-down to bottom-up and 𝑛𝑓 <
𝑛/𝛽 for the switch from bottom-up to top-down. The 𝑚𝑓 is the
number of edges of the vertex being searched, the𝑚 is the num-
ber of edges in the graph, the 𝑛𝑓 is the number of vertices being
searched, and the 𝑛 is the number of vertices in the graph. The 𝛼
and 𝛽 are constant parameters that can be determined by users.

We propose an algorithm to automatically determine 𝛼 and 𝛽 .
Graph500 benchmark performs BFS using 64 different vertices in a

1

2

22

A: Top-down

1

2

22

B: Bottom-up

Figure 1: Breadth-first search

150,000

100,000

50,000

0Pe
rf
or
m
an
ce
 (G

TE
PS

)

Number of trials

24

16

8

0

Param
eter (α

, β
)

1 10 20 30 40 50 60

Performance (113,146 → 143,487)

α(10 → 20.04)

β (14 → 0.10)

Figure 2: Performance result

certain graph as starting points. Our algorithm records the timing
of the switch between top-down and bottom-up, and executes the
following flow. (1) For each execution, calculate 𝛼 ′, which can be
switched at a different timing. (2) Re-run the execution with 𝛼 ′

closest to 𝛼 . (3) If the performance has improved, 𝛼 ′ → 𝛼 , and
return to (2). (4) Perform the same operations as (1)-(3) for 𝛽 .

4 RESULT
Fig. 2 shows the result using 152,064 nodes of the supercomputer
Fugaku. The initial values of 𝛼 and 𝛽 were set to 10 and 14, respec-
tively. Finally, the values changed to 20.04 and 0.10, respectively,
and the performance achieved about 27% performance improve-
ment from 113,146 GTEPS to 143,487 GTEPS.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPSKAKENHIGrant Number 21H03450.

REFERENCES
[1] Masahiro Nakao et al. Performance of the Supercomputer Fugaku for Breadth-

First Search in Graph500 Benchmark. ISC 2021
[2] Scott Beamer et. al. Distributed Memory Breadth-First Search Revisited: Enabling

Bottom-Up Search, IPDPSW 2013


