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In this paper, we propose a distributed process log clustering framework that collects and classifies the distributed process execution event logs recorded by the distributed operations of the inter-organizational business process management system. 
The proposed framework is implemented onto the MapReduce-based distributed processing framework and applied to the SICN-oriented process mining system. Note that it ought to be operable and applicable as a preprocessing tool of the process 
mining and deep learning frameworks and systems. We call the collected datasets of the distributed process event logs as the process BIG-Logs. especially. The framework proposed and implemented in this paper undertakes the splitting, mapping, 
shuffling, and reducing operations of the MapReduce’s preprocessing functionality, and it is embedded into the SICN-oriented process mining system as one of the essential components of a specific process mining algorithm, which is the gradual ρ-
Algorithm, and a predictive process monitoring algorithm to be developed in the authors’ research group. We assume that the process BIG-Logs are formatted in the IEEE XES standard data format and recorded from executing all the fragmented 
workcases instantiated from an inter-organizational business process model. Also, we assume that the underlying inter-organizational business process model is defined by the structured information control net process modeling methodology, and 
that the fragmentation approach is done in vertical, horizontal, or hybrid. 

ABSTRACT

1 Research Goal and Scope 
With regarding to the workflow and business process automation technologies on process-aware enterprises and 
organizations, a recent requirement is surely the emerging concept of process fidelity [1][2]. The process fidelity 
implies a sort of experimental mining studies [1][3][5] for measuring the discrepancies between the planned process model 
at build-time and the enacted process model at run-time. It is also related with the core activity in the process life-cycle 
management that supports reengineering and redesigning those deployed processes models running on the process-
aware enterprises and organizations. The technical solution for realizing the process fidelity concept is adopting the 
process mining platforms and systems that provide the process discovery functionality as well as the process rediscovery 
functionality exploring the control-flow knowledge from the archives of the process models and their execution event log 
histories.  
    Another recent requirement is about enacting the large scale and inter-organizational business process models [3]. 
The fidelity and life-cycle management of these large scale and inter-organizational process models can be maintained by 
the process mining functionality, too. The teaser figure of Fig. 1 is to illustrate a situational view of enacting the large scale 
and inter-organizational process models. Assume that a specific inter-organizational process model is deployed and 
enacted across all the distributed branches of the process-aware organization, and its execution history is recorded and 
managed as the valuable assets of Bigdata. As illustrated in the figure, the essential preprocessing function for adopting 
the process mining functionality is firstly to collect all the partial process execution event logs [2] that are vertically, 
horizontally, or hybrid fragmented and dispersed over all the branches of a large scale organization. The next is to 
rearrange such event logs collected to form traces of execution event sequences for the process instances (or workcases) 
spawned from a corresponding process model. And the last step of the preprocessing function is to classify these process 
execution event log traces into a group of trace patterns, each of which is holding the identical activity execution event 
sequence.  
   Conclusively, the main research challenge of this paper is to develop a process log clustering framework based upon the 
MapReduce platform [4], and verify its functional correctness by applying to a large scale and inter-organizational process 
enactment event log Bigdata that is made up of three fragmented process log datasets. The authors’ research group has 
successfully developed the SICN-oriented process mining algorithm and system [2] that can eventually hook the 
implemented process log clustering framework proposed in this paper as the preprocessing function. 

2 The MapReduce-based Process Log Clustering Algorithm and System  
This section introduce the algorithmic description of the inter-organizational process log clustering framework. Especially, we 
adopt the MapReduce platform [4] for gathering and classifying the fragmented process logs distributed over all the 
branches of the process-aware inter-organization. Note that the MapReduce takes the list of records formed in a (Key, 
Value) pair, as inpput. The following is the pseudo-coded algorithm: 
Require: A Group of Fragmented 
Datasets of Inter-Organizational  
Process Enactment Event Logs  
in XES-Format, T  
Ensure: A List of TWC-Patterns, P 
Ensure: Occ. of TWCP, ∀Op(p ∈ P)  
procedure MAIN(T)  
   class ω-Mapper; class ω-Reducer;  
end procedure  
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Fig. 2. Experimental Verification of the MapReduce-based 
Inter-Organizational Process Log Clustering Framework  
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Fig. 1. A Situational View of the Process-Aware Organization  
Supported by the Distributed Business Process Management  
System with Distributed Process Mining Functionality 

3 Experimental Verification and Conclusion 
As a consequence, we successfully implemented the inter organizational process log clustering algorithm and framework with operating upon the temporal work-case driven MapReduce platform, and plugged this implemented framework in the SICN-
oriented process mining system [2][5] as the preprocessing function. By using the SICN-oriented process mining system, we carried out an verificational experiment with fragmenting the original Customer Summary process log dataset [1] into three 
groups of horizontally distributed temporal work-case traces. As illustrated in Fig. 2, we horizontally fragmented the Customer Summary process dataset, which is containing the total 43,808 temporal work-case traces, into three fragmented process 
event log datasets; These three horizontally fragmented process event log datasets contain 14,000, 14,000, and 15,808 temporal work-case traces, respectively. After fulfilling the mapping operations and the reducing operations of ω-Mapper and ω-
Reducer, at last we successfully obtained a clustered process dataset, named as Process BIG-Log, holding the total 59 temporal work-case pattern-clusters and each pattern-cluster is containing a certain amount of the temporal work-case traces, all 
of which have the identical activity-event sequences. Note that the top five temporal work-case pattern-clusters, in terms of the holding number of temporal work-case traces, have 31806, 5004, 1328, 2525, and 778 temporal work-case traces, 
respectively. The experimental results are depicted in Fig. 3 through four screens captured from the implemented algorithm and the SICN-oriented process mining system embedding the implemented algorithm as its preprocessing tool, as well. The 
captured screens at the right-hand side of the figure shows four SICN-oriented process models that are discovered from four selected groups (4, 3, 19, and 35 temporal work-case patterns) of temporal work-case patterns out of 59 different types of 
temporal work-case patterns after being clustered from the three fragmented process log datasets by the mapper and the reducer. While on the other hand, the left-hand side also shows the four captured screens displaying the statistical information, 
such as the number of traces, the number of trace-types (temporal work-case patterns), the number of events, and so on, discovered from the Customer Summary process BIG-log dataset.  
    Conclusively, we proposed a MapReduce-based inter-organizational process log clustering framework, which is one of the preprocessing techniques to be ultimately used in process mining technology to discover and rediscover process models 
from the distributed and fragmented execution event logs of large-scale inter-organizational process models. As a result, in order to verify the feasibility of the proposed clustering framework, we successfully implemented the process log clustering 
algorithm using the Hadoop-based MapReduce platform and applied to the actual process model execution event log dataset to verify the functional correctness of the proposed clustering framework as a preprocessing technique of the SICN-oriented 
process mining system.

Fig. 3. Experimental Results of the SICN-oriented Process Mining System 

class ω-Mapper: 
  Organizing key & value;  
  method Map(fTWC-key a,fTWC-value t)  
    for ∀ t do 
      clustering p ← t; 
      call Emit(pattern p, count weight);  
    end for 

class ω-Reducer: 
  method Reduce(key p, values W)  
    Op ← 0; 
     for ∀ w ∈ W do  
         Op ← Op + w;  
         call Emit (pattern p, count Op);  
      end for 

   The procedural classes of ω-Mapper and ω-Reducer takes, as input, a list of records organized with the temporal work-
cases in a pair of Key (fTWC-key, the line number) and Value (fTWC-value, the event trace). The 
method Map( ) function reads the list of (fTWC-key, fTWC-value) pairs and puts the intermediate result out in the form 
of (pattern-key, count-value) through the method Emit( ) function. These intermediate results consist of a list of 
(pattern-key, count-values[ ]) pairs clustered with the same value based on pattern-key. The method 
Reduce( ) function performs an aggregate operation on lists of (pattern-key, pattern-values) pairs, and returns 
the final result, that is, each pattern (temporal work-case pattern) and its occurrence. The total occurrence (pattern p, 
count Op) is output through the Emit( ) function. Actually, prior to executing the method Reduce( ) function, the 
mapper performs clustering on the intermediate results based on the pattern-key, which is achieved through sorting on the 
pattern-key values. Then, the Combine( ) function is internally executed prior to delivery to each task that will perform the 
method Reduce( ) function on the (pattern-key, pattern-values[ ]) lists clustered with sorting. Note that the 
Combine( ) function is intended to reduce the I/O cost required to transfer data from the mapper to the reducer by 
performing the aggregate operation in advance in the map-step.


