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Figure 1: Proposed exchanging Figure 2: Top-1 accuracy of training ResNet50 model with (a) ImageNet- Figure 3: Breakdown of perfor-

strategies.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the most prevalent algorithm
for training Deep Neural Networks (DNN). SGD iterates the in-
put data set in each training epoch processing data samples in a
random access fashion (global shuffling). Because this puts enor-
mous pressure on the I/O subsystem, the most common approach
to distributed SGD in HPC environments is to replicate the entire
dataset to node-local SSDs. However, due to rapidly growing data
set sizes, this approach has become increasingly infeasible. In this
context, an alternative way is to partition the dataset among work-
ers, i.e., each worker uses the same part of the dataset for all the
epochs (known as local shuffling). Our prior work [1] showed that
the local shuffling could not achieve similar validation accuracy as
the default global shuffling strategy in large-scale training. In this
context, [1] proposed a novel partial-local shuffling strategy that
randomly exchanges only a proportion of the dataset among work-
ers in each epoch. Through extensive experiments on up to 2,048
GPUs of ABCI, we demonstrated that validation accuracy of global
shuffling can be maintained when carefully tuning the partially
distributed exchange. However, exchanging the samples randomly
between workers leads to a personalized all-to-all communication
pattern which is sensitive to network congestion when scaling up.
In this study, we propose an exchange strategy that is scalable.

2 PROPOSED SAMPLE EXCHANGE STRATEGY

When training a model at a large scale, e.g., 1000s of GPUs, the
number of samples in each local partition of the dataset becomes
small. Thus, the distribution of worker’s data does not represent
the entire dataset. It leads to the reduction of accuracy (as shown
in [1]). We propose to exchange the samples that provide more
important information in training for balancing importance dis-
tribution among devices to further accelerate the accuracy of the

50 dataset on 128 GPUs and (b) ImageNet-1K dataset on 2048 GPUs.

mance (2K GPUs, ImageNet-1K).

training process. We define the importance of a sample by its infer-

ence loss. At a epoch t, a sample i is selected to exchange with a
possibility of p; = % where I! is the importance of the sample i.
We also avoid network congestion by managing the communication
pattern in a pair-wise manner (instead of an all-to-all pattern). That
is, we pair the worker that holds the most important sample with
the worker that holds the least importance of samples, and so on
(W3 and W4 in Figure 1, respectively). To reduce the overhead of
computing the importance of samples in an epoch ¢, we propose to
reuse the training losses in the previous epoch ¢ — 1 (lagging loss).

We evaluate our proposed strategy with the ResNet50 model and
ImageNet dataset using the same setting as in [1]. The result in
Figure 2 shows that, select samples based on their importance (IS)
can achieve the same accuracy while exchanging a smaller number
of samples (exchange fraction) than those of method in [1] (Pari-
tal). Pairing method (IS-Pair) helps to balance the data distribution
among workers more easily leading to a further reduction in the
exchange fraction, e.g., only 10% of samples vs. 30% and 70% as in IS
and Partial. With the same exchanging fraction, IS-Pair reduces the
communication time (WE+WU and EXCHANGE) significantly by
avoiding the network congestion (Figure 3. Finally, Using lagging
loss (ILag-Pair) removes the overhead of computing the importance
(IMPT) while maintaining the same accuracy as IS-Pair.
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