A Proposal of Automatic Parallelization using Transformer-based
Large Language Models

Soratouch Pornmaneerattanatri Keichi Takahashi Yutaro Kashiwa
pornmaneerattanatri.so.pn8@is.naist.jp Tohoku University Nara Institute of Science and
Nara Institute of Science and Sendai, Japan Technology
Technology Nara, Japan

Nara, Japan

Kohei Ichikawa
Nara Institute of Science and
Technology
Nara, Japan

1 INTRODUCTION

Modern computer hardware requires parallel programming to fully
exploit its computational performance. Parallel programming de-
mands deep knowledge of both hardware and software to bridge
the two. To reduce the need for learning parallel programming, re-
searchers have been developing various tools including automatic
parallelization tools. These tools typically employ static analysis
to identify loop patterns in source codes and transform paralleliz-
able loops. However, codes that are manually parallelized often
outperform those that are parallelized by automatic tools.

The newly emerged deep learning-based Natural Language Pro-
cessing (NLP) models have set new benchmarks in NLP tasks, sur-
passing the average human score for the first time. This model,
named transformer, is implemented with an attention mechanism
as one of the layers, enabling developers to pre-train language un-
derstanding models to solve downstream tasks without the need for
labeled data. Pre-training allows large sections of unlabeled articles,
publications, and even conversations from various sources to be
used as training data. The enormous success of transformer-based
language models has inspired software engineering researchers to
train language models on computer programming languages. The
performance of these models on downstream software engineering
tasks including code completion and code translation significantly
exceeds that of previous studies.

2 PROPOSAL

We propose building a generative model for OpenMP directives
trained on source code from public GitHub repositories utilizing
CodeT5 / CodeT5+ [3], a transformer-based Large Language Model
(LLM) designed for code understanding and generation. For this
purpose, we collected 57,170 OpenMP-parallelized for-loops from
GitHub. Since training LLMs is computationally demanding, we
employ models pre-trained on C and C++ source codes, and use our
collected dataset for fine-tuning. Figure 1 illustrates the two-part
structure of our automatic parallelization approach, employing the
LLMs. The first part, derived from our previous study, is the parallel
for-loop classification model [2], which identifies parallelizable
for-loops in the given source code. The main contribution of this
study is the second part, which focuses on the OpenMP directive
generation model.

Hajimu lida
Nara Institute of Science and

Technology
Nara, Japan
A
Parallelizable
< /> —> Larallelizavley, —> />
Unparallehzable
For-loop Parallel OpenMP OpenMP
For-loop Directive Directive
CIaSS|f|cat|on Generation
Model No Model

output

Figure 1: An automatic parallelization approach using LLM

3 EVALUATION

The effectiveness of this study is measured by the performance im-
provement of the source code modified by the tools. Various bench-
marks providing both serial and OpenMP source codes, such as
NAS Parallel Benchmarks, UK Mini-App Consortium Applications,
and Mantevo Proxy Applications, will be used for this measure-
ment. Benchmarks are utilized for their convenience, facilitating
straightforward comparisons of runtime reductions between each
approach and the original serial source code.

Clava is selected as the baseline model for the static analysis
approach. This tool is recognized as a state-of-the-art C/C++ source-
to-source compiler. One of the functions in Clava, Autopar [1],
leverages static analysis to identify the parallelizable for-loops and
annotates them with OpenMP directives. Although Autopar-Clava
demonstrates exceptional results, it does not surpass the manual
annotations by experts.

REFERENCES

[1] Hamid Arabnejad, Jodo Bispo, Jorge G. Barbosa, and Jodo M. P. Cardoso. 2018.
AutoPar-Clava: An Automatic Parallelization source-to-source tool for C code
applications. In Proceedings of the 9th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and 7th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms.
13-19.

[2] Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Kohei
Ichikawa, and Hajimu lida. 2024. Parallelizable Loop Detection using Pre-trained
Transformer Models for Code Understanding. In Parallel and Distributed Comput-
ing, Applications and Technologies. Springer Nature Singapore, 32-42.

[3] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. CoRR abs/2305.07922 (2023).

https://orcid.org/xxxx-xxxx-xxxx
https://orcid.org/xxxx-xxxx-xxxx
https://orcid.org/xxxx-xxxx-xxxx
https://orcid.org/xxxx-xxxx-xxxx
https://orcid.org/xxxx-xxxx-xxxx

	1 Introduction
	2 Proposal
	3 Evaluation
	References

